氧化应激
纳米材料
纳米毒理学
纳米技术
材料科学
化学
纳米颗粒
生物化学
作者
Natalia Forbot,Paulina Bolibok,Marek Wiśniewski,Katarzyna Roszek
标识
DOI:10.2174/1389557519666191029162150
摘要
The concept of nanoscale materials and their applications in industrial technologies, consumer goods, as well as in novel medical therapies has rapidly escalated in the last several years. Consequently, there is a critical need to understand the mechanisms that drive nanomaterials biocompatibility or toxicity to human cells and tissues. The ability of nanomaterials to initiate cellular pathways resulting in oxidative stress has emerged as a leading hypothesis in nanotoxicology. Nevertheless, there are a few examples revealing another face of nanomaterials - they can alleviate oxidative stress via decreasing the level of reactive oxygen species. The fundamental structural and physicochemical properties of carbonaceous nanomaterials that govern these anti-oxidative effects are discussed in this article. The signaling pathways influenced by these unique nanomaterials, as well as examples of their applications in the biomedical field, e.g. cell culture, cell-based therapies or drug delivery, are presented. We anticipate this emerging knowledge of intrinsic anti-oxidative properties of carbon nanomaterials to facilitate the use of tailored nanoparticles in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI