FTRANS: Energy-Efficient Acceleration of Transformers using FPGA

计算机科学 现场可编程门阵列 变压器 计算 高效能源利用 并行计算 循环神经网络 计算机工程 硬件加速 门阵列 人工智能 人工神经网络 算法 计算机硬件 电压 工程类 电气工程
作者
Bingbing Li,Santosh Pandey,Haowen Fang,Yanjun Lyv,Ji Li,Jieyang Chen,Mimi Xie,Lipeng Wan,Hang Liu,Caiwen Ding
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2007.08563
摘要

In natural language processing (NLP), the "Transformer" architecture was proposed as the first transduction model replying entirely on self-attention mechanisms without using sequence-aligned recurrent neural networks (RNNs) or convolution, and it achieved significant improvements for sequence to sequence tasks. The introduced intensive computation and storage of these pre-trained language representations has impeded their popularity into computation and memory-constrained devices. The field-programmable gate array (FPGA) is widely used to accelerate deep learning algorithms for its high parallelism and low latency. However, the trained models are still too large to accommodate to an FPGA fabric. In this paper, we propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations. Our framework includes enhanced block-circulant matrix (BCM)-based weight representation to enable model compression on large-scale language representations at the algorithm level with few accuracy degradation, and an acceleration design at the architecture level. Experimental results show that our proposed framework significantly reduces the model size of NLP models by up to 16 times. Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Noora应助危机的寒烟采纳,获得10
刚刚
Polymer72应助woshiwuziq采纳,获得20
1秒前
李爱国应助softwind采纳,获得10
2秒前
奋斗的元珊完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
curtisness应助科研通管家采纳,获得10
3秒前
XiaoMing完成签到,获得积分10
3秒前
笛卡尔发布了新的文献求助10
7秒前
ppxx关注了科研通微信公众号
8秒前
9秒前
Aven完成签到,获得积分10
10秒前
Coldpal完成签到,获得积分10
10秒前
十三完成签到,获得积分10
14秒前
美丽凌柏发布了新的文献求助10
15秒前
123发布了新的文献求助10
16秒前
finoa完成签到,获得积分10
17秒前
20秒前
22秒前
ppxx发布了新的文献求助10
26秒前
29秒前
万能图书馆应助yyk采纳,获得10
32秒前
失眠的弼完成签到 ,获得积分10
32秒前
An发布了新的文献求助10
35秒前
7788关注了科研通微信公众号
38秒前
seaya完成签到,获得积分10
40秒前
123jopop完成签到,获得积分10
41秒前
轻松的海燕完成签到 ,获得积分10
43秒前
深情安青应助seaya采纳,获得30
44秒前
欧巴拉吧完成签到 ,获得积分10
45秒前
Lemon应助Weylai采纳,获得10
47秒前
48秒前
irochi发布了新的文献求助10
52秒前
Herman_Chen完成签到,获得积分10
55秒前
zhangzongli发布了新的文献求助30
55秒前
月yue完成签到,获得积分10
56秒前
58秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350888
求助须知:如何正确求助?哪些是违规求助? 2976477
关于积分的说明 8675040
捐赠科研通 2657629
什么是DOI,文献DOI怎么找? 1455181
科研通“疑难数据库(出版商)”最低求助积分说明 673736
邀请新用户注册赠送积分活动 664225