Detection of Atlantic salmon bone residues using machine vision technology

人工智能 计算机科学 分割 残余物 模式识别(心理学) 目标检测 计算机视觉 人工神经网络 算法
作者
Tianhua Xie,Xinxing Li,Xiaoshuan Zhang,Jinyou Hu,Fang Yao
出处
期刊:Food Control [Elsevier]
卷期号:123: 107787-107787 被引量:22
标识
DOI:10.1016/j.foodcont.2020.107787
摘要

The detection of foreign bodies in the food industry has received considerable research attention in recent years. This study aimed to assess the efficacy of combining machine vision with neural network models for detecting residual bones in Atlantic salmon flesh as well as explore the degree to which image quality affects the performance of object detection models. We first employed region segmentation and various forms of data expansion to obtain 3120 images of Atlantic salmon bone residues and then used the image compression algorithm to obtain data sets with images that differ in quality. Three object detection models (Faster-RCNN + Alexnet, Faster-RCNN + VGG16 and Faster-RCNN + VGG19) were trained based on uncompressed image data sets. The Faster-RCNN + VGG16 model had optimal test performance on the image data set with a compression ratio of 25% (F1-score = 0.87, AP = 0.78). The Faster-RCNN + VGG16 model for images with a compression ratio of 10% did not show any practical value (F1-score = 0.17, AP = 0.04). Therefore, neural network models based on machine vision can robustly detect residual bones in Atlantic salmon flesh from images containing bones. The quality of images used for detection had a significant impact on the detection results, and small target images should be less robust to compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助傲娇的云朵采纳,获得10
刚刚
刚刚
刚刚
liudiqiu完成签到,获得积分10
刚刚
Akashi完成签到,获得积分10
刚刚
风中珩完成签到 ,获得积分10
1秒前
LIU发布了新的文献求助10
1秒前
1秒前
李知恩完成签到,获得积分10
2秒前
2秒前
EthanChan完成签到,获得积分10
2秒前
2秒前
野性的孤菱完成签到,获得积分10
2秒前
茂密的头发完成签到,获得积分10
3秒前
3秒前
Hongsong发布了新的文献求助10
4秒前
勤恳马里奥完成签到,获得积分0
5秒前
5秒前
yzy发布了新的文献求助10
5秒前
6秒前
6秒前
科目三应助AA采纳,获得10
6秒前
6秒前
Elaine发布了新的文献求助10
6秒前
Elaine发布了新的文献求助10
6秒前
Elaine发布了新的文献求助10
6秒前
Elaine发布了新的文献求助10
6秒前
roy完成签到 ,获得积分10
7秒前
Akashi发布了新的文献求助10
7秒前
李爱国应助茂密的头发采纳,获得10
7秒前
张时婕完成签到 ,获得积分10
7秒前
小胖鱼发布了新的文献求助10
7秒前
不许焦绿o完成签到,获得积分10
8秒前
pcr163应助zhanzhanzhan采纳,获得50
8秒前
8秒前
SweepingMonk应助EthanChan采纳,获得10
8秒前
爆米花应助二豆子0采纳,获得10
9秒前
科研通AI5应助Mian采纳,获得10
9秒前
CodeCraft应助酒九采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740