In Situ Surface Modification of Microfluidic Blood–Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles

跨细胞 血脑屏障 生物物理学 材料科学 纳米颗粒 右旋糖酐 表面改性 纳米医学 内吞作用 纳米技术 化学 生物化学 生物 受体 中枢神经系统 神经科学 物理化学
作者
Bo Peng,Ziqiu Tong,Wing Yin Tong,Paul Pasic,Arianna Oddo,Yitian Dai,Meihua Luo,Juliette Frescene,Nicholas G. Welch,Christopher D. Easton,Helmut Thissen,Nicolas H. Voelcker
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (51): 56753-56766 被引量:50
标识
DOI:10.1021/acsami.0c17102
摘要

Here, we have developed and evaluated a microfluidic-based human blood–brain-barrier (μBBB) platform that models and predicts brain tissue uptake of small molecule drugs and nanoparticles (NPs) targeting the central nervous system. By using a photocrosslinkable copolymer that was prepared from monomers containing benzophenone and N-hydroxysuccinimide ester functional groups, we were able to evenly coat and functionalize μBBB chip channels in situ, providing a covalently attached homogenous layer of extracellular matrix proteins. This novel approach allowed the coculture of human endothelial cells, pericytes, and astrocytes and resulted in the formation of a mimic of cerebral endothelium expressing tight junction markers and efflux proteins, resembling the native BBB. The permeability coefficients of a number of compounds, including caffeine, nitrofurantoin, dextran, sucrose, glucose, and alanine, were measured on our μBBB platform and were found to agree with reported values. In addition, we successfully visualized the receptor-mediated uptake and transcytosis of transferrin-functionalized NPs. The BBB-penetrating NPs were able to target glioma cells cultured in 3D in the brain compartment of our μBBB. In conclusion, our μBBB was able to accurately predict the BBB permeability of both small molecule pharmaceuticals and nanovectors and allowed time-resolved visualization of transcytosis. Our versatile chip design accommodates different brain disease models and is expected to be exploited in further BBB studies, aiming at replacing animal experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊白玉完成签到 ,获得积分10
刚刚
科研通AI2S应助风犬少年采纳,获得10
1秒前
Febrine0502完成签到,获得积分10
1秒前
Dayang发布了新的文献求助10
2秒前
科研通AI2S应助禾之采纳,获得10
2秒前
可可西里完成签到 ,获得积分10
5秒前
hu完成签到,获得积分10
5秒前
6秒前
糖糖糖唐应助zhangyixin采纳,获得10
6秒前
黑羊完成签到,获得积分10
7秒前
8秒前
跳跃的摩托完成签到 ,获得积分10
8秒前
生动小白菜完成签到,获得积分10
9秒前
9秒前
Lmmcer完成签到,获得积分20
9秒前
10秒前
冷静妙之完成签到,获得积分10
10秒前
12秒前
12秒前
已绕晕发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
禾之发布了新的文献求助10
15秒前
Good39发布了新的文献求助10
16秒前
千空完成签到,获得积分10
16秒前
17秒前
bkagyin应助冷静的仙人掌采纳,获得10
17秒前
科研通AI2S应助乐观的晋鹏采纳,获得10
18秒前
烟花应助闻诗歌采纳,获得10
18秒前
研友_Z7XY28发布了新的文献求助10
18秒前
清新的幻桃完成签到,获得积分10
18秒前
buno应助Sene采纳,获得10
19秒前
wu应助调皮黑猫采纳,获得10
20秒前
21秒前
搜集达人应助壮观的不可采纳,获得10
22秒前
安澈一生完成签到 ,获得积分10
27秒前
1234应助复杂的巧曼采纳,获得10
27秒前
28秒前
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270142
求助须知:如何正确求助?哪些是违规求助? 2909764
关于积分的说明 8350416
捐赠科研通 2580124
什么是DOI,文献DOI怎么找? 1403158
科研通“疑难数据库(出版商)”最低求助积分说明 655653
邀请新用户注册赠送积分活动 635044