材料科学
合金
灰烬
退火(玻璃)
高熵合金
成核
沉淀硬化
相(物质)
降水
热力学
相图
冶金
旋节分解
气象学
物理
有机化学
化学
作者
Benjamin E. MacDonald,Zhiqiang Fu,Xin Wang,Zhiming Li,Weiping Chen,Yizhang Zhou,Dierk Raabe,Julie M. Schoenung,Horst Hahn,Enrique J. Lavernia
标识
DOI:10.1016/j.actamat.2019.09.030
摘要
Phase decomposition is commonly observed experimentally in single-phase high entropy alloys (HEAs). Hence, it is essential for the consideration of HEAs for structural applications to study and understand the nature of phase decomposition in HEAs, particularly the influence it has on mechanical behavior. This paper describes the phase decomposition in the equiatomic CoCuFeMnNi HEA and how the reported secondary phases influence mechanical behavior. Thermomechanical processing, followed by systematic post deformation annealing treatments, revealed the formation of two distinct secondary phases within the equiatomic face-centered cubic (FCC) matrix phase. Low temperature annealing treatments at 600 °C and below led to the nucleation of Fe-Co rich ordered B2 precipitates that contributed precipitation hardening while sufficiently small in size, on the order of 140 nm in diameter. At temperatures <800 °C Cu segregation, due to its immiscibility with the other constituents, eventually forms a Cu-rich disordered FCC phase that is determined to increase the yield strength of the alloy while reducing the ductility, likely attributable to the presence of additional interfaces. The thermal stability and chemistry of these phases are compared to those predicted on the basis of calculated phase diagram (CALPHAD) analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI