Finding key players in complex networks through deep reinforcement learning

强化学习 计算机科学 启发式 钥匙(锁) 班级(哲学) 集合(抽象数据类型) 人工智能 复杂网络 深度学习 理论计算机科学 分布式计算 计算机安全 万维网 程序设计语言
作者
Changjun Fan,Li Zeng,Yizhou Sun,Yang‐Yu Liu
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 317-324 被引量:358
标识
DOI:10.1038/s42256-020-0177-2
摘要

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a certain network functionality, is a fundamental class of problems in network science. Potential applications include network immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typically cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality. Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables us to design more robust networks against both attacks and failures. A fundamental problem in network science is how to find an optimal set of key players whose activation or removal significantly impacts network functionality. The authors propose a deep reinforcement learning framework that can be trained on small networks to understand the organizing principles of complex networked systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
完美世界应助熊猫采纳,获得20
3秒前
眼睛大安珊完成签到 ,获得积分10
3秒前
dd完成签到 ,获得积分10
3秒前
搜集达人应助欢欢采纳,获得10
3秒前
4秒前
慕青应助sun采纳,获得10
5秒前
CipherSage应助summermf采纳,获得10
5秒前
6秒前
大模型应助wangDx采纳,获得10
6秒前
王淳完成签到 ,获得积分10
7秒前
琪琪格完成签到,获得积分10
7秒前
小二郎应助万物可爱采纳,获得10
8秒前
10秒前
John完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
稳重的盼秋完成签到,获得积分10
11秒前
Ma完成签到,获得积分10
11秒前
勤恳思松发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
hfm发布了新的文献求助10
11秒前
青黛完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
跳跳糖完成签到 ,获得积分10
13秒前
13秒前
zz发布了新的文献求助10
13秒前
14秒前
yellow发布了新的文献求助10
15秒前
16秒前
Devin_Zhen发布了新的文献求助10
16秒前
Wy21完成签到 ,获得积分10
16秒前
李联洪发布了新的文献求助10
16秒前
黄蛋黄发布了新的文献求助20
17秒前
zzl发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769694
求助须知:如何正确求助?哪些是违规求助? 5581034
关于积分的说明 15422447
捐赠科研通 4903349
什么是DOI,文献DOI怎么找? 2638182
邀请新用户注册赠送积分活动 1586070
关于科研通互助平台的介绍 1541180