Finding key players in complex networks through deep reinforcement learning

强化学习 计算机科学 启发式 钥匙(锁) 班级(哲学) 集合(抽象数据类型) 人工智能 复杂网络 深度学习 理论计算机科学 分布式计算 计算机安全 万维网 程序设计语言
作者
Changjun Fan,Li Zeng,Yizhou Sun,Yang‐Yu Liu
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 317-324 被引量:223
标识
DOI:10.1038/s42256-020-0177-2
摘要

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a certain network functionality, is a fundamental class of problems in network science. Potential applications include network immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typically cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality. Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables us to design more robust networks against both attacks and failures. A fundamental problem in network science is how to find an optimal set of key players whose activation or removal significantly impacts network functionality. The authors propose a deep reinforcement learning framework that can be trained on small networks to understand the organizing principles of complex networked systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
撒大苏打发布了新的文献求助10
3秒前
芮卜肆发布了新的文献求助10
3秒前
科研民工完成签到 ,获得积分10
4秒前
研友_LNB5DL完成签到,获得积分10
4秒前
轻松黑裤关注了科研通微信公众号
6秒前
热心的冰香完成签到,获得积分10
6秒前
周乘风发布了新的文献求助10
8秒前
10秒前
我就叫渣渣辉吧完成签到,获得积分10
12秒前
科研通AI2S应助叫滚滚采纳,获得10
13秒前
13秒前
无聊的蚂蚁完成签到,获得积分10
14秒前
15秒前
飞云发布了新的文献求助30
16秒前
洋芋完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
L061114发布了新的文献求助10
22秒前
23秒前
23秒前
草莓屁屁完成签到,获得积分10
24秒前
24秒前
lvang完成签到,获得积分10
25秒前
三三得九发布了新的文献求助10
26秒前
叫滚滚发布了新的文献求助10
26秒前
独特的易形完成签到,获得积分10
26秒前
27秒前
27秒前
紫麒麟完成签到,获得积分10
27秒前
Xiehf完成签到,获得积分10
27秒前
热心的冰香关注了科研通微信公众号
28秒前
草莓屁屁发布了新的文献求助10
28秒前
青汁完成签到,获得积分10
29秒前
Wuin发布了新的文献求助10
30秒前
顾矜应助秋骊采纳,获得10
31秒前
L061114完成签到,获得积分10
31秒前
小二郎应助叫滚滚采纳,获得10
31秒前
青汁发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706