亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finding key players in complex networks through deep reinforcement learning

强化学习 计算机科学 启发式 钥匙(锁) 班级(哲学) 集合(抽象数据类型) 人工智能 复杂网络 深度学习 理论计算机科学 分布式计算 计算机安全 万维网 程序设计语言
作者
Changjun Fan,Li Zeng,Yizhou Sun,Yang‐Yu Liu
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (6): 317-324 被引量:203
标识
DOI:10.1038/s42256-020-0177-2
摘要

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a certain network functionality, is a fundamental class of problems in network science. Potential applications include network immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typically cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality. Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables us to design more robust networks against both attacks and failures. A fundamental problem in network science is how to find an optimal set of key players whose activation or removal significantly impacts network functionality. The authors propose a deep reinforcement learning framework that can be trained on small networks to understand the organizing principles of complex networked systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助想游泳的鹰采纳,获得10
2秒前
多喝热水完成签到 ,获得积分10
3秒前
研友_Lmg1gZ完成签到,获得积分10
46秒前
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
mar1ne关注了科研通微信公众号
3分钟前
mar1ne完成签到,获得积分10
3分钟前
TongKY完成签到 ,获得积分10
3分钟前
7分钟前
轩辕听白发布了新的文献求助20
7分钟前
紫熊完成签到,获得积分10
8分钟前
8分钟前
8分钟前
9分钟前
你在发布了新的文献求助10
9分钟前
9分钟前
小凯发布了新的文献求助10
9分钟前
10分钟前
小新爱看文献完成签到,获得积分10
11分钟前
14分钟前
神勇映雁完成签到 ,获得积分20
14分钟前
14分钟前
16分钟前
小凯发布了新的文献求助10
17分钟前
小马甲应助开朗的玉米采纳,获得10
17分钟前
田様应助HJL采纳,获得10
17分钟前
wang应助科研通管家采纳,获得50
18分钟前
Roger完成签到,获得积分10
18分钟前
冬去春来完成签到 ,获得积分10
18分钟前
小凯完成签到,获得积分10
18分钟前
璃月稻妻完成签到,获得积分10
19分钟前
稻子完成签到 ,获得积分10
19分钟前
19分钟前
随机的都是啥昵称完成签到 ,获得积分10
19分钟前
chiazy完成签到 ,获得积分10
20分钟前
20分钟前
HJL发布了新的文献求助10
20分钟前
20分钟前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1500
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
Decision Theory 600
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2989906
求助须知:如何正确求助?哪些是违规求助? 2650571
关于积分的说明 7162941
捐赠科研通 2285003
什么是DOI,文献DOI怎么找? 1211315
版权声明 592507
科研通“疑难数据库(出版商)”最低求助积分说明 591505