Finding key players in complex networks through deep reinforcement learning

强化学习 计算机科学 启发式 钥匙(锁) 班级(哲学) 集合(抽象数据类型) 人工智能 复杂网络 深度学习 理论计算机科学 分布式计算 计算机安全 万维网 程序设计语言
作者
Changjun Fan,Li Zeng,Yizhou Sun,Yang‐Yu Liu
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (6): 317-324 被引量:267
标识
DOI:10.1038/s42256-020-0177-2
摘要

Finding an optimal set of nodes, called key players, whose activation (or removal) would maximally enhance (or degrade) a certain network functionality, is a fundamental class of problems in network science. Potential applications include network immunization, epidemic control, drug design and viral marketing. Due to their general NP-hard nature, these problems typically cannot be solved by exact algorithms with polynomial time complexity. Many approximate and heuristic strategies have been proposed to deal with specific application scenarios. Yet, we still lack a unified framework to efficiently solve this class of problems. Here, we introduce a deep reinforcement learning framework FINDER, which can be trained purely on small synthetic networks generated by toy models and then applied to a wide spectrum of application scenarios. Extensive experiments under various problem settings demonstrate that FINDER significantly outperforms existing methods in terms of solution quality. Moreover, it is several orders of magnitude faster than existing methods for large networks. The presented framework opens up a new direction of using deep learning techniques to understand the organizing principle of complex networks, which enables us to design more robust networks against both attacks and failures. A fundamental problem in network science is how to find an optimal set of key players whose activation or removal significantly impacts network functionality. The authors propose a deep reinforcement learning framework that can be trained on small networks to understand the organizing principles of complex networked systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助biomichael采纳,获得10
1秒前
清爽的诗槐完成签到,获得积分10
1秒前
ljxx发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
xinxinqi完成签到 ,获得积分10
4秒前
青石完成签到,获得积分20
5秒前
背后的雨竹完成签到,获得积分10
5秒前
那地方完成签到,获得积分10
6秒前
XIEMIN发布了新的文献求助10
6秒前
6秒前
WW完成签到,获得积分10
6秒前
7秒前
正常完成签到,获得积分20
7秒前
boatmann发布了新的文献求助10
7秒前
HHH完成签到 ,获得积分10
7秒前
8秒前
denz完成签到,获得积分10
8秒前
冷酷的啤酒完成签到,获得积分10
9秒前
巴拉巴拉发布了新的文献求助10
9秒前
9秒前
cns完成签到,获得积分10
9秒前
9秒前
H-China发布了新的文献求助10
9秒前
9秒前
9秒前
成就钧完成签到,获得积分10
10秒前
青石发布了新的文献求助10
10秒前
cui完成签到,获得积分10
10秒前
樊珩发布了新的文献求助20
11秒前
Kin_L发布了新的文献求助20
11秒前
Agoni完成签到,获得积分10
11秒前
Lawrence完成签到,获得积分10
11秒前
已经让完成签到,获得积分10
12秒前
库兹马完成签到,获得积分10
12秒前
czcz完成签到,获得积分10
12秒前
汉堡包应助LDDD采纳,获得10
12秒前
Yexidong发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904