数据科学
计算机科学
大数据
健康信息学
信息学
医学影像学
医疗保健
背景(考古学)
模式
分析
精密医学
翻译研究信息学
人工智能
医学
工程信息学
数据挖掘
病理
工程类
古生物学
社会学
经济
电气工程
生物
经济增长
社会科学
作者
Andreas S. Panayides,Amir A. Amini,Nenad Filipović,Ashish Sharma,Sotirios A. Tsaftaris,Alistair A. Young,David J. Foran,Nhan Do,Spyretta Golemati,Tahsin Kurç,Kun Huang,Konstantina S. Nikita,Ben P. Veasey,Michalis Zervakis,Joel Saltz,Constantinos S. Pattichis
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2020-05-29
卷期号:24 (7): 1837-1857
被引量:365
标识
DOI:10.1109/jbhi.2020.2991043
摘要
This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI