亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma

医学 接收机工作特性 肾细胞癌 肾透明细胞癌 Lasso(编程语言) 放射科 逻辑回归 核医学 无线电技术 肿瘤科 内科学 计算机科学 万维网
作者
Qiong Li,Yujia Liu,Di Dong,Xu Bai,Qingbo Huang,Aitao Guo,Huiyi Ye,Jie Tian,Haiyi Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (5): 1557-1566 被引量:32
标识
DOI:10.1002/jmri.27182
摘要

Background Nuclear grade is of importance for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC). Purpose To develop and validate an MRI‐based radiomic model for preoperative predicting WHO/ISUP nuclear grade in ccRCC. Study Type Retrospective. Population In all, 379 patients with histologically confirmed ccRCC. Training cohort ( n = 252) and validation cohort ( n = 127) were randomly assigned. Field Strength/Sequence Pretreatment 3.0T renal MRI. Imaging sequences were fat‐suppressed T 2 WI, contrast‐enhanced T 1 WI, and diffusion weighted imaging. Assessment Three prediction models were developed using selected radiomic features, radiomic and clinicoradiologic characteristics, and a model containing only clinicoradiologic characteristics. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to assess the predictive performance of these models in predicting high‐grade ccRCC. Statistical Tests The least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum relevance (mRMR) method were used for the selection of radiomic features and clinicoradiologic characteristics, respectively. Multivariable logistic regression analysis was used to develop the radiomic signature of radiomic features and clinicoradiologic model of clinicoradiologic characteristics. Results The radiomic signature showed good performance in discriminating high‐grade (grades 3 and 4) from low‐grade (grades 1 and 2) ccRCC, with sensitivity, specificity, and AUC of 77.3%, 80.0%, and 0.842, respectively, in the validation cohort. The radiomic model, combining radiomic signature and clinicoradiologic characteristics, displayed good predictive ability for high‐grade with sensitivity, specificity, and accuracy of 63.6%, 93.3%, and 88.2%, respectively, in the validation cohort. The radiomic model showed a significantly better performance than the clinicoradiologic model ( P < 0.05). Data Conclusion Multiparametric MRI‐based radiomic model can predict WHO/ISUP grade in patients with ccRCC with satisfying performance, and thus could help the physician to improve treatment decisions. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zhangzhangzhang完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
13秒前
青羽凌雪应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
青羽凌雪应助科研通管家采纳,获得10
14秒前
16秒前
寒冷擎汉发布了新的文献求助20
20秒前
小灵通完成签到 ,获得积分10
20秒前
人间耙耙柑完成签到 ,获得积分10
24秒前
寒冷擎汉完成签到,获得积分10
29秒前
Orange应助xuan采纳,获得10
35秒前
35秒前
jinmuna发布了新的文献求助30
41秒前
Esperanza完成签到,获得积分10
41秒前
57秒前
1分钟前
1分钟前
1分钟前
Xxynysmhxs完成签到 ,获得积分10
1分钟前
qks完成签到 ,获得积分10
1分钟前
在水一方应助tarrsy采纳,获得30
1分钟前
赘婿应助will采纳,获得10
1分钟前
999完成签到,获得积分10
1分钟前
1分钟前
1分钟前
更深的蓝发布了新的文献求助10
1分钟前
luqong完成签到,获得积分10
1分钟前
天天好心覃完成签到 ,获得积分10
1分钟前
小灰灰完成签到 ,获得积分10
1分钟前
1分钟前
熊一只发布了新的文献求助10
1分钟前
温暖砖头完成签到,获得积分10
1分钟前
1分钟前
will完成签到,获得积分10
1分钟前
1分钟前
温暖砖头发布了新的文献求助10
2分钟前
鲜于元龙发布了新的文献求助10
2分钟前
will发布了新的文献求助10
2分钟前
青羽凌雪应助科研通管家采纳,获得10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307266
求助须知:如何正确求助?哪些是违规求助? 2940978
关于积分的说明 8500041
捐赠科研通 2615243
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663542
邀请新用户注册赠送积分活动 648382