A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites

电解质 阴极 催化作用 硫黄 多硫化物 法拉第效率 纳米颗粒 材料科学 化学 电极 无机化学 锂(药物) 化学工程 纳米技术 物理化学 有机化学 冶金 内分泌学 工程类 医学
作者
Chen Zhao,Gui‐Liang Xu,Yu Zhou,Leicheng Zhang,Inhui Hwang,Yuxue Mo,Yuxun Ren,Lei Cheng,Cheng‐Jun Sun,Yang Ren,Xiaobing Zuo,Jun‐Tao Li,Shi‐Gang Sun,Khalil Amine,Tianshou Zhao
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:16 (2): 166-173 被引量:601
标识
DOI:10.1038/s41565-020-00797-w
摘要

Lithium–sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li–S pouch cells are significantly limited by the use of thin sulfur electrodes, flooded electrolytes and Li metal degradation. Here we propose a cathode design concept to achieve good Li–S pouch cell performances. The cathode is composed of uniformly embedded ZnS nanoparticles and Co–N–C single-atom catalyst to form double-end binding sites inside a highly oriented macroporous host, which can effectively immobilize and catalytically convert polysulfide intermediates during cycling, thus eliminating the shuttle effect and lithium metal corrosion. The ordered macropores enhance ionic transport under high sulfur loading by forming sufficient triple-phase boundaries between catalyst, conductive support and electrolyte. This design prevents the formation of inactive sulfur (dead sulfur). Our cathode structure shows improved performances in a pouch cell configuration under high sulfur loading and lean electrolyte operation. A 1-A-h-level pouch cell with only 100% lithium excess can deliver a cell specific energy of >300 W h kg−1 with a Coulombic efficiency >95% for 80 cycles. The shuttling effect in Li–S batteries can be drastically suppressed by using a single-atom Co catalyst and polar ZnS nanoparticles embedded in a macroporous conductive matrix as a cathode. Using this strategy, Li–S pouch cells show stable cycling and high energy performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助lcpppppp采纳,获得10
1秒前
核桃发布了新的文献求助10
1秒前
221发布了新的文献求助10
1秒前
失眠的冬易完成签到 ,获得积分10
1秒前
drew完成签到 ,获得积分10
2秒前
dreamode完成签到,获得积分10
2秒前
优美的梦玉完成签到,获得积分20
3秒前
星星完成签到,获得积分10
3秒前
舒心睿渊完成签到,获得积分20
3秒前
万能图书馆应助QQQ采纳,获得10
3秒前
李小强完成签到,获得积分10
3秒前
michael发布了新的文献求助10
4秒前
orixero应助xxy采纳,获得10
4秒前
隐形曼青应助康明雪采纳,获得10
4秒前
天天快乐应助球球泥惹111采纳,获得10
5秒前
ken131发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
5秒前
nature应助清浅采纳,获得10
5秒前
7秒前
英俊的铭应助清河聂氏采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Hello应助keyanniniz采纳,获得10
7秒前
swall5w完成签到,获得积分10
7秒前
9秒前
9秒前
魔丸学医完成签到,获得积分10
9秒前
科研通AI6应助吱吱采纳,获得10
9秒前
99完成签到,获得积分10
10秒前
Reborn发布了新的文献求助10
11秒前
11秒前
SYX完成签到,获得积分10
11秒前
大模型应助红朱古力酒采纳,获得10
11秒前
拼搏绿柳完成签到,获得积分0
12秒前
霞霞子完成签到 ,获得积分10
12秒前
美少女完成签到,获得积分10
12秒前
非少发布了新的文献求助10
13秒前
13秒前
烟熏柿子完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956