电解
羰基硫醚
化学
气体扩散电极
碳化
化学工程
铜
电极
无机化学
材料科学
电解质
硫黄
物理化学
冶金
催化作用
工程类
复合材料
扫描电子显微镜
生物化学
作者
F. Pelayo Garcı́a de Arquer,Cao‐Thang Dinh,Adnan Ozden,Joshua Wicks,Christopher McCallum,Ahmad R. Kirmani,Dae‐Hyun Nam,Christine M. Gabardo,Ali Seifitokaldani,Xue Wang,Yuguang Li,Fengwang Li,Jonathan P. Edwards,Lee J. Richter,Steven J. Thorpe,David Sinton,Edward H. Sargent
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-02-06
卷期号:367 (6478): 661-666
被引量:1032
标识
DOI:10.1126/science.aay4217
摘要
Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO2) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI