Adaptive Local Linear Discriminant Analysis

降维 线性判别分析 计算机科学 人工智能 子空间拓扑 模式识别(心理学) 线性子空间 判别式 图形 高维数据聚类 嵌入 数学 机器学习 聚类分析 理论计算机科学 几何学
作者
Feiping Nie,Zheng Wang,Rong Wang,Zhen Wang,Xuelong Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:14 (1): 1-19 被引量:36
标识
DOI:10.1145/3369870
摘要

Dimensionality reduction plays a significant role in high-dimensional data processing, and Linear Discriminant Analysis (LDA) is a widely used supervised dimensionality reduction approach. However, a major drawback of LDA is that it is incapable of extracting the local structure information, which is crucial for handling multimodal data. In this article, we propose a novel supervised dimensionality reduction method named Adaptive Local Linear Discriminant Analysis (ALLDA), which adaptively learns a k -nearest neighbors graph from data themselves to extract the local connectivity of data. Furthermore, the original high-dimensional data usually contains noisy and redundant features, which has a negative impact on the evaluation of neighborships and degrades the subsequent classification performance. To address this issue, our method learns the similarity matrix and updates the subspace simultaneously so that the neighborships can be evaluated in the optimal subspaces where the noises have been removed. Through the optimal graph embedding, the underlying sub-manifolds of data in intra-class can be extracted precisely. Meanwhile, an efficient iterative optimization algorithm is proposed to solve the minimization problem. Promising experimental results on synthetic and real-world datasets are provided to evaluate the effectiveness of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂先生完成签到,获得积分10
刚刚
lhc完成签到,获得积分10
1秒前
酷波er应助狸狸采纳,获得10
3秒前
3秒前
3秒前
怡然迎天发布了新的文献求助10
4秒前
4秒前
活泼飞鸟完成签到,获得积分10
5秒前
7秒前
7秒前
粗犷的山水完成签到,获得积分20
8秒前
画舫发布了新的文献求助10
8秒前
jj发布了新的文献求助10
9秒前
科目三应助xdm采纳,获得10
9秒前
活泼飞鸟发布了新的文献求助10
12秒前
希望天下0贩的0应助小猪采纳,获得10
12秒前
dpp发布了新的文献求助10
12秒前
和谐耳机完成签到 ,获得积分10
12秒前
怡然迎天完成签到,获得积分10
14秒前
15秒前
慕青应助jj采纳,获得10
16秒前
能干的小笼包完成签到,获得积分20
16秒前
18秒前
dpp完成签到,获得积分10
19秒前
酷波er应助驱蚊器采纳,获得10
20秒前
xdm发布了新的文献求助10
23秒前
彭于晏应助石石石采纳,获得10
23秒前
Hello应助欣喜的香彤采纳,获得10
26秒前
Cala洛~完成签到 ,获得积分10
27秒前
Lucas应助武思远采纳,获得10
27秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
琲珂发布了新的文献求助10
31秒前
31秒前
张本丁完成签到,获得积分10
31秒前
32秒前
欧欧欧导完成签到,获得积分10
33秒前
清爽妙竹应助科研通管家采纳,获得10
34秒前
清爽妙竹应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415