P0013MAP KINASES-REGULATED PROTEINS IN SIGNALING PATHWAYS OF VASOPRESSIN IN KIDNEY COLLECTING DUCT

水通道蛋白2 激酶 磷酸化 细胞生物学 加压素 信号转导 Wnt信号通路 生物 内分泌学 机械工程 工程类 入口 水道
作者
Hyo‐Ju Jang,Hyun Jun Jung,Si‐Yoon Han,Hyo‐Jung Choi,Euijung Park,Hye‐Jeong Park,Tae‐Hwan Kwon
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:35 (Supplement_3)
标识
DOI:10.1093/ndt/gfaa143.p0013
摘要

Abstract Background and Aims Activation of G protein-coupled vasopressin V2 receptor (V2R) is critical in water and electrolyte transport in the kidney collecting duct (CD) cells. Stimulation of V2R affects several downstream pathways, including PKA, PI3K/AKT, Wnt, and Ca2+/calmodulin. Previous studies have shown that MAP kinases are also involved as an apparent downstream signaling pathway of V2R. However, the role of MAP kinases and their substrate proteins in the vasopressin signaling, including the regulation of AQP2 expression and phosphorylation, are unclear. In the present study, substrates of MAP kinases were identified using bioinformatic analyses, and they were mapped on the downstream signaling pathways of V2R. Tripartite motif-containing protein 28 (TRIM28) was identified as a substrate of ERK1 as well as a vasopressin-responsive protein via bioinformatic tools. We further evaluated whether TRIM28 plays a role in vasopressin-mediated regulation of AQP2 in the kidney CD. Method To identify comprehensive substrates of MAP kinases in the kidney CD, we investigated 1) the expression of MAP kinases in CD cells by use of databases based on high-throughput profiles of transcriptome and proteome (http://hpcwebapps.cit.nih.gov/ESBL/Database/index.html); and 2) MAP kinases substrates expressed in the CD cells by use of protein phosphorylation databases (PhosphoNetworks and RegPhos 2.0). The identified substrates were mapped on the downstream signaling of V2R. Cellular and subcellular localization of selected substrate protein (TRIM28) was examined by immunohistochemistry. The role of TRIM28 in vasopressin-mediated AQP2 regulation was examined by quantitative real-time PCR (qRT-PCR) and semiquantitative immunoblotting after RNA interference of TRIM28 in mpkCCDc11 cells. Results Immunoblotting of mpkCCDc11 cells revealed that both p-ERK1/2 and pS261-AQP2 expression was decreased in response to dDAVP (10-9 M) stimulation. In silico analyses demonstrated that five MAP kinases (ERK1, ERK2, ERK3, JNK2, and MAPK p38 alpha) were identified as the MAP kinases expressed in kidney CD cells. Based on several protein kinase-substrates databases, 189 proteins were identified as the substrates of the five MAP kinases. In particular, sequential data mining revealed TRIM28, as the substrate of ERK1, has the only one phosphorylation site which was down-regulated by vasopressin stimulation. Since TRIM28 is a transcription cofactor and also a ubiquitin-protein E3 ligase, we examined whether TRIM28 is involved in the regulation of AQP2 expression as a mediator of MAP kinases action. Immunofluorescence labeling of mouse and rat kidneys revealed that TRIM28 was exclusively expressed in the nuclei of the tubular epithelial cells, including CD cells. dDAVP-induced AQP2 mRNA and protein up-regulation was significantly attenuated in mpkCCDc11 cells with siRNA-mediated knockdown of TRIM28. Conclusion We identify MAP kinase substrates in the kidney CD, which are mapped on the downstream signaling pathways of V2R. TRIM28 is identified as a substrate of MAP kinases that involves in vasopressin signaling pathways. TRIM28 is likely to play a role in the regulation of AQP2 expression, particularly in the AQP2 transcription.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
碧玉墨绿完成签到,获得积分10
刚刚
xiaoma完成签到,获得积分10
刚刚
1秒前
潇洒的擎苍完成签到,获得积分10
1秒前
刘晓纳发布了新的文献求助10
1秒前
晴子发布了新的文献求助10
1秒前
洛鸢发布了新的文献求助10
2秒前
立马毕业完成签到,获得积分10
2秒前
卫尔摩斯发布了新的文献求助10
2秒前
BINBIN完成签到 ,获得积分10
2秒前
hfgeyt完成签到,获得积分10
3秒前
sakurai应助背后的诺言采纳,获得10
3秒前
湘华发布了新的文献求助10
4秒前
Jenny应助lan采纳,获得10
4秒前
单薄的飞松完成签到 ,获得积分10
4秒前
醒醒发布了新的文献求助10
4秒前
5秒前
恨安完成签到,获得积分10
5秒前
jijahui发布了新的文献求助30
5秒前
南瓜咸杏发布了新的文献求助30
5秒前
6秒前
调研昵称发布了新的文献求助50
6秒前
7秒前
白白不读书完成签到 ,获得积分10
7秒前
8秒前
AIA7发布了新的文献求助10
8秒前
8秒前
8秒前
夏橪完成签到,获得积分10
8秒前
8秒前
dddddd发布了新的文献求助10
9秒前
什么也难不倒我完成签到 ,获得积分10
9秒前
9秒前
立马毕业发布了新的文献求助10
9秒前
喜悦的尔阳完成签到,获得积分10
10秒前
10秒前
现实的白开水完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762