平稳分布
流行病模型
非线性系统
数学
入射(几何)
马尔可夫链
遍历性
应用数学
遍历理论
消光(光学矿物学)
统计物理学
控制理论(社会学)
计算机科学
数学分析
统计
物理
医学
控制(管理)
人口
人工智能
光学
环境卫生
量子力学
几何学
作者
Junna Hu,Buyu Wen,Ting Zeng,Zhidong Teng
出处
期刊:International Journal of Nonlinear Sciences and Numerical Simulation
[De Gruyter]
日期:2020-10-27
卷期号:22 (3-4): 391-407
被引量:1
标识
DOI:10.1515/ijnsns-2018-0324
摘要
Abstract In this paper, a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination, nonlinear incidence and white noises under regime switching and Lévy jumps is investigated. A new threshold value is determined. Some basic assumptions with regard to nonlinear incidence, white noises, Markov switching and Lévy jumps are introduced. The threshold conditions to guarantee the extinction and permanence in the mean of the disease with probability one and the existence of unique ergodic stationary distribution for the model are established. Some new techniques to deal with the Markov switching, Lévy jumps, nonlinear incidence and vaccination for the stochastic epidemic models are proposed. Lastly, the numerical simulations not only illustrate the main results given in this paper, but also suggest some interesting open problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI