In-situ generation of g-C3N4 on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation

光电流 材料科学 纳米孔 介电谱 异质结 电极 分解水 化学工程 光催化 能量转换效率 光电化学电池 纳米技术 光电子学 电化学 催化作用 化学 电解质 生物化学 工程类 物理化学
作者
Siyuan Li,Yi Jiang,Wenchao Jiang,Yu Zhang,Kai Pan,Song Wang,Chongyang Hu,Lu‐Hua Zhang,Lixin Xia
出处
期刊:Applied Surface Science [Elsevier]
卷期号:523: 146441-146441 被引量:18
标识
DOI:10.1016/j.apsusc.2020.146441
摘要

Abstract Constructing a heterojunction photoelectrode is an effective way to promote the photogenerated charge separation in photoelectrochemical (PEC) water oxidation. In this work, we successfully fabricated C3N4/BiVO4 hybrid electrodes by integrating g-C3N4 onto the nanoporous BiVO4 via a simple in-situ synthesis method. The as-prepared C3N4/BiVO4 photoanodes were systematically studied by Electrochemical Impedance Spectroscopy, steady-state surface photovoltage (SPV), transient SPV, Open circuit potential and Photoluminescence measurements. With an optimal loading of g-C3N4, the 2-C3N4/BiVO4 electrode showed a high photocurrent density of 4.06 mA/cm2 at 1.23 V (vs. RHE) for water oxidation, a 2.8 times enhancement over that of the BiVO4. It is found that g-C3N4 improved the PEC performance of the photoanodes by simultaneously promoting the charge separation and surface reaction kinetics. When a NiOOH co-catalyst was immobilized onto the 2-C3N4/BiVO4 electrode, both the PEC property and stability of the photoanode were enhanced. An extremely high photocurrent density of 5.44 mA/cm2 at 1.23 V was achieved. The largest half-cell solar energy conversion efficiency for NiOOH/2-C3N4/BiVO4 was 1.43% at 0.78 V, corresponding to 8.4 times that of unmodified BiVO4 (0.17% at 0.97 V). This work brings new insight into the development of C3N4-based devices for application in solar to fuel conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半壶月色半边天完成签到 ,获得积分10
刚刚
tmpstlml发布了新的文献求助10
刚刚
1秒前
1秒前
不安饼干完成签到 ,获得积分10
3秒前
活泼的飞鸟完成签到,获得积分10
3秒前
4秒前
xuyun发布了新的文献求助10
4秒前
4秒前
zzcres完成签到,获得积分10
6秒前
eeeee完成签到 ,获得积分10
6秒前
乐观德地完成签到,获得积分10
7秒前
大个应助yf_zhu采纳,获得10
7秒前
llk发布了新的文献求助10
8秒前
一只大肥猫完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
10秒前
科研通AI5应助GGG采纳,获得10
11秒前
11秒前
13秒前
Ann发布了新的文献求助20
13秒前
13秒前
buno应助duxinyue采纳,获得10
13秒前
xlj发布了新的文献求助10
14秒前
14秒前
可爱的函函应助zhen采纳,获得10
15秒前
研友_VZG7GZ应助dingdong采纳,获得10
16秒前
16秒前
李成恩完成签到 ,获得积分10
17秒前
心碎的黄焖鸡完成签到 ,获得积分10
17秒前
琪琪扬扬发布了新的文献求助10
18秒前
19秒前
19秒前
宗磬完成签到,获得积分10
20秒前
NexusExplorer应助搞怪不言采纳,获得10
21秒前
科研通AI5应助一天八杯水采纳,获得10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808