Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis

人工智能 随机森林 接收机工作特性 交叉验证 深度学习 计算机科学 机器学习 分类器(UML) 模式识别(心理学) 交叉熵 二元分类 强直性脊柱炎 召回 支持向量机 医学 外科 哲学 语言学
作者
Riel Castro‐Zunti,Eun Hae Park,Younhee Choi,Gong Yong Jin,Seok‐Bum Ko
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:82: 101718-101718 被引量:31
标识
DOI:10.1016/j.compmedimag.2020.101718
摘要

Ankylosing spondylitis (AS) is an arthritis with symptoms visible in medical imagery. This paper proposes, to the authors' best knowledge, the first use of statistical machine learning- and deep learning-based classifiers to detect erosion, an early AS symptom, via analysis of computed tomography (CT) imagery, giving some consideration to patient age in so doing. We used gray-level co-occurrence matrices and local binary patterns to generate input features to machine learning algorithms, specifically k-nearest neighbors (k-NN) and random forest. Deep learning solutions based on a modified InceptionV3 architecture were designed and tested, with one classifier produced by training with a cross-entropy loss function and another produced by additionally seeking to minimize validation loss. We found that the random forest classifiers outperform the k-NN classifiers and achieve an eightfold cross-validation average accuracy, recall, and area under receiver operator characteristic curve (ROC AUC) of 96.0%, 92.9%, and 0.97, respectively, for erosion vs. young control patients, and 82.4%, 80.6%, and 0.91, respectively, for erosion vs. old control patients. We found that the deep learning classifier trained without minimizing validation loss was best and achieves an eightfold cross-validation accuracy, recall, and ROC AUC of 99.0%, 97.5%, and 0.97, respectively, for erosion vs. all (combined young and old) control patients; this classifier outperforms a musculoskeletal radiologist with 9 years of experience in raw sensitivity and specificity by 8.4% and 9.5%, respectively. Despite the relatively small dataset on which we trained and cross-validated, our results indicate the potential of machine and deep learning to aid AS diagnosis, and further research using larger datasets should be conducted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅致远发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
5秒前
爆米花应助清颜采纳,获得10
5秒前
5秒前
乐观黎云完成签到,获得积分10
6秒前
杏里关注了科研通微信公众号
6秒前
星辰大海应助Huang采纳,获得10
6秒前
默默善愁发布了新的文献求助50
7秒前
7秒前
Alpha应助怡然的寻桃采纳,获得10
7秒前
大力帽子应助Haj1mi采纳,获得10
7秒前
深情安青应助ycy采纳,获得10
7秒前
领导范儿应助儒雅致远采纳,获得10
7秒前
泡泡儿发布了新的文献求助10
8秒前
阳光的桐完成签到,获得积分10
9秒前
10秒前
岳维芸发布了新的文献求助10
10秒前
好久不见应助听话的寒烟采纳,获得30
10秒前
xixi发布了新的文献求助30
11秒前
shushu完成签到 ,获得积分10
11秒前
完美世界应助yuaner采纳,获得10
11秒前
libe发布了新的文献求助10
12秒前
朴素的怜雪完成签到,获得积分10
12秒前
害怕的靖巧完成签到,获得积分10
13秒前
13秒前
wanci应助独特的采纳,获得10
14秒前
tiptip应助Wu采纳,获得10
14秒前
PAPA完成签到,获得积分10
15秒前
Orange应助renwoxing采纳,获得10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
友好锦程完成签到,获得积分20
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137