Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis

人工智能 随机森林 接收机工作特性 交叉验证 深度学习 计算机科学 机器学习 分类器(UML) 模式识别(心理学) 交叉熵 二元分类 强直性脊柱炎 召回 支持向量机 医学 外科 语言学 哲学
作者
Riel Castro‐Zunti,Eun Hae Park,Younhee Choi,Gong Yong Jin,Seok‐Bum Ko
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:82: 101718-101718 被引量:31
标识
DOI:10.1016/j.compmedimag.2020.101718
摘要

Ankylosing spondylitis (AS) is an arthritis with symptoms visible in medical imagery. This paper proposes, to the authors' best knowledge, the first use of statistical machine learning- and deep learning-based classifiers to detect erosion, an early AS symptom, via analysis of computed tomography (CT) imagery, giving some consideration to patient age in so doing. We used gray-level co-occurrence matrices and local binary patterns to generate input features to machine learning algorithms, specifically k-nearest neighbors (k-NN) and random forest. Deep learning solutions based on a modified InceptionV3 architecture were designed and tested, with one classifier produced by training with a cross-entropy loss function and another produced by additionally seeking to minimize validation loss. We found that the random forest classifiers outperform the k-NN classifiers and achieve an eightfold cross-validation average accuracy, recall, and area under receiver operator characteristic curve (ROC AUC) of 96.0%, 92.9%, and 0.97, respectively, for erosion vs. young control patients, and 82.4%, 80.6%, and 0.91, respectively, for erosion vs. old control patients. We found that the deep learning classifier trained without minimizing validation loss was best and achieves an eightfold cross-validation accuracy, recall, and ROC AUC of 99.0%, 97.5%, and 0.97, respectively, for erosion vs. all (combined young and old) control patients; this classifier outperforms a musculoskeletal radiologist with 9 years of experience in raw sensitivity and specificity by 8.4% and 9.5%, respectively. Despite the relatively small dataset on which we trained and cross-validated, our results indicate the potential of machine and deep learning to aid AS diagnosis, and further research using larger datasets should be conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐萌完成签到 ,获得积分10
刚刚
shiyi完成签到,获得积分10
1秒前
善学以致用应助天真大神采纳,获得10
1秒前
Ava应助灵巧鹤采纳,获得10
2秒前
4秒前
清新发布了新的文献求助10
4秒前
直率飞柏发布了新的文献求助10
5秒前
肚子好e啊完成签到 ,获得积分10
5秒前
Kent完成签到 ,获得积分10
6秒前
8秒前
xxfsx应助凯凯采纳,获得10
9秒前
苏苏发布了新的文献求助10
9秒前
10秒前
浮游应助大大小采纳,获得10
12秒前
14秒前
传奇3应助直率飞柏采纳,获得10
15秒前
15秒前
15秒前
胖虎完成签到 ,获得积分10
15秒前
CodeCraft应助jason采纳,获得10
16秒前
16秒前
嗯哈发布了新的文献求助10
17秒前
王涛发布了新的文献求助10
19秒前
xx发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
lorryyyy发布了新的文献求助10
20秒前
wanci应助Lee采纳,获得10
22秒前
xxfsx应助凯凯采纳,获得10
23秒前
苏苏完成签到,获得积分10
23秒前
23秒前
24秒前
风趣的寻凝完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
磨人的老妖精完成签到,获得积分10
28秒前
Guochunbao发布了新的文献求助10
30秒前
ddup发布了新的文献求助20
31秒前
32秒前
jia雪发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474