Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis

人工智能 随机森林 接收机工作特性 交叉验证 深度学习 计算机科学 机器学习 分类器(UML) 模式识别(心理学) 交叉熵 二元分类 强直性脊柱炎 召回 支持向量机 医学 外科 语言学 哲学
作者
Riel Castro‐Zunti,Eun Hae Park,Younhee Choi,Gong Yong Jin,Seok‐Bum Ko
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:82: 101718-101718 被引量:31
标识
DOI:10.1016/j.compmedimag.2020.101718
摘要

Ankylosing spondylitis (AS) is an arthritis with symptoms visible in medical imagery. This paper proposes, to the authors' best knowledge, the first use of statistical machine learning- and deep learning-based classifiers to detect erosion, an early AS symptom, via analysis of computed tomography (CT) imagery, giving some consideration to patient age in so doing. We used gray-level co-occurrence matrices and local binary patterns to generate input features to machine learning algorithms, specifically k-nearest neighbors (k-NN) and random forest. Deep learning solutions based on a modified InceptionV3 architecture were designed and tested, with one classifier produced by training with a cross-entropy loss function and another produced by additionally seeking to minimize validation loss. We found that the random forest classifiers outperform the k-NN classifiers and achieve an eightfold cross-validation average accuracy, recall, and area under receiver operator characteristic curve (ROC AUC) of 96.0%, 92.9%, and 0.97, respectively, for erosion vs. young control patients, and 82.4%, 80.6%, and 0.91, respectively, for erosion vs. old control patients. We found that the deep learning classifier trained without minimizing validation loss was best and achieves an eightfold cross-validation accuracy, recall, and ROC AUC of 99.0%, 97.5%, and 0.97, respectively, for erosion vs. all (combined young and old) control patients; this classifier outperforms a musculoskeletal radiologist with 9 years of experience in raw sensitivity and specificity by 8.4% and 9.5%, respectively. Despite the relatively small dataset on which we trained and cross-validated, our results indicate the potential of machine and deep learning to aid AS diagnosis, and further research using larger datasets should be conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
黄紫红蓝发布了新的文献求助10
刚刚
1秒前
1秒前
anna1992发布了新的文献求助10
2秒前
2秒前
3秒前
cquank发布了新的文献求助10
3秒前
SYLH应助dongli6536采纳,获得10
3秒前
water完成签到,获得积分10
4秒前
上官若男应助shine采纳,获得10
4秒前
战战兢兢完成签到 ,获得积分10
4秒前
4秒前
Shinewei完成签到,获得积分10
4秒前
开心蘑菇应助自由的无色采纳,获得30
5秒前
fff完成签到,获得积分10
5秒前
6秒前
小鱼医生发布了新的文献求助10
6秒前
jyu发布了新的文献求助10
6秒前
7秒前
7秒前
xiejinhui发布了新的文献求助10
8秒前
kiki完成签到 ,获得积分10
8秒前
铁甲小宝发布了新的文献求助10
8秒前
Shinewei发布了新的文献求助10
8秒前
9秒前
9秒前
久9完成签到 ,获得积分10
11秒前
11秒前
cquank完成签到,获得积分10
12秒前
ZoraZeng完成签到,获得积分10
12秒前
12秒前
虚心的寒梦完成签到,获得积分10
13秒前
炫哥IRIS完成签到,获得积分10
13秒前
牧童完成签到,获得积分10
13秒前
HenryXiao发布了新的文献求助10
13秒前
顺利紫山发布了新的文献求助10
14秒前
ZZRR完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650