亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EKF-LOAM: An Adaptive Fusion of LiDAR SLAM With Wheel Odometry and Inertial Data for Confined Spaces With Few Geometric Features

里程计 扩展卡尔曼滤波器 计算机视觉 同时定位和映射 人工智能 传感器融合 计算机科学 惯性测量装置 机器人 卡尔曼滤波器 移动机器人
作者
Gilmar P. Cruz,Adriano M. C. Rezende,Victor R. F. Miranda,Rafael Fernandes,Héctor Azpúrua,Armando Alves Neto,Gustavo Pessin,Gustavo Freitas
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1458-1471 被引量:18
标识
DOI:10.1109/tase.2022.3169442
摘要

A precise localization system and a map that properly represents the environment are fundamental for several robotic applications. Traditional LiDAR SLAM algorithms are particularly susceptible to underestimating the distance covered by real robots in environments with few geometric features. Common industrial confined spaces, such as ducts and galleries, have long and homogeneous structures, which are difficult to map. In this paper, we propose a novel approach, the EKF-LOAM , which fuses wheel odometry and IMU (Inertial Measurement Unit) data into the LeGO-LOAM algorithm using an Extended Kalman Filter. For that, the EKF-LOAM uses a simple and lightweight adaptive covariance matrix based on the number of detected geometric features. Simulated and real-world experiments with the EspeleoRobô, a service robot designed to inspect confined places, show that the EKF-LOAM method reduces the underestimating problem, with improvements greater than 50% when compared to the original LeGO-LOAM algorithm. Note to Practitioners —This paper is motivated by the challenges of autonomous navigation for mobile ground robots within confined and unstructured environments. Here, we propose a data fusion framework that uses common sensors (such as LiDARs, wheel odometry, and inertial devices) to improve the simultaneous localization and mapping (SLAM) capabilities of a robot without GPS and compass. This approach does not need artificial landmarks nor ideal light and, in scenarios with few geometric features, increases the performance of LiDAR SLAM techniques based on edge and planar features. We also provide a robust controller for the autonomous navigation of the robot during the mapping of a tunnel. Experiments carried out in simulation and real-world confined places show the effectiveness of our approach. In future work, we shall incorporate other sensors, such as cameras, to improve the SLAM process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅苑睐完成签到,获得积分10
3秒前
4秒前
Lucifer完成签到,获得积分10
9秒前
10秒前
kk_1315完成签到,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得30
14秒前
景辣条应助结实的海白采纳,获得10
20秒前
Mia发布了新的文献求助10
20秒前
21秒前
大学生完成签到 ,获得积分10
27秒前
13504544355完成签到 ,获得积分10
28秒前
zhiyu完成签到,获得积分10
37秒前
46秒前
step_stone完成签到,获得积分10
51秒前
felix发布了新的文献求助10
53秒前
爱吃蒸蛋完成签到,获得积分10
53秒前
脑洞疼应助打地鼠工人采纳,获得10
53秒前
星辰大海应助Jackylee采纳,获得10
54秒前
55秒前
泡面小猪发布了新的文献求助10
58秒前
1分钟前
星辰大海应助星落枝头采纳,获得10
1分钟前
景辣条完成签到,获得积分10
1分钟前
1分钟前
Ni发布了新的文献求助10
1分钟前
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
1分钟前
景辣条关注了科研通微信公众号
1分钟前
1分钟前
krajicek完成签到,获得积分10
1分钟前
吾系渣渣辉完成签到 ,获得积分10
1分钟前
orixero应助打地鼠工人采纳,获得10
1分钟前
allenice完成签到,获得积分10
1分钟前
海派Hi完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wyg1994发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989