EKF-LOAM: An Adaptive Fusion of LiDAR SLAM With Wheel Odometry and Inertial Data for Confined Spaces With Few Geometric Features

里程计 扩展卡尔曼滤波器 计算机视觉 同时定位和映射 人工智能 传感器融合 计算机科学 惯性测量装置 机器人 卡尔曼滤波器 完整的 移动机器人
作者
Gilmar P. Cruz,Adriano M. C. Rezende,Victor R. F. Miranda,Rafael Fernandes,Héctor Azpúrua,Armando Alves Neto,Gustavo Pessin,Gustavo Freitas
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1458-1471 被引量:53
标识
DOI:10.1109/tase.2022.3169442
摘要

A precise localization system and a map that properly represents the environment are fundamental for several robotic applications. Traditional LiDAR SLAM algorithms are particularly susceptible to underestimating the distance covered by real robots in environments with few geometric features. Common industrial confined spaces, such as ducts and galleries, have long and homogeneous structures, which are difficult to map. In this paper, we propose a novel approach, the EKF-LOAM , which fuses wheel odometry and IMU (Inertial Measurement Unit) data into the LeGO-LOAM algorithm using an Extended Kalman Filter. For that, the EKF-LOAM uses a simple and lightweight adaptive covariance matrix based on the number of detected geometric features. Simulated and real-world experiments with the EspeleoRobô, a service robot designed to inspect confined places, show that the EKF-LOAM method reduces the underestimating problem, with improvements greater than 50% when compared to the original LeGO-LOAM algorithm. Note to Practitioners —This paper is motivated by the challenges of autonomous navigation for mobile ground robots within confined and unstructured environments. Here, we propose a data fusion framework that uses common sensors (such as LiDARs, wheel odometry, and inertial devices) to improve the simultaneous localization and mapping (SLAM) capabilities of a robot without GPS and compass. This approach does not need artificial landmarks nor ideal light and, in scenarios with few geometric features, increases the performance of LiDAR SLAM techniques based on edge and planar features. We also provide a robust controller for the autonomous navigation of the robot during the mapping of a tunnel. Experiments carried out in simulation and real-world confined places show the effectiveness of our approach. In future work, we shall incorporate other sensors, such as cameras, to improve the SLAM process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
king_creole完成签到,获得积分10
1秒前
qixiaoqi发布了新的文献求助10
1秒前
西北完成签到,获得积分10
2秒前
八一发布了新的文献求助10
2秒前
可爱的函函应助吃猫的鱼采纳,获得10
2秒前
碧蓝迎南发布了新的文献求助10
2秒前
活力初晴发布了新的文献求助10
3秒前
zhao完成签到,获得积分10
3秒前
3秒前
sky完成签到,获得积分20
4秒前
zhw发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
凌仕琪完成签到,获得积分10
5秒前
语物完成签到,获得积分10
5秒前
哑巴完成签到,获得积分10
5秒前
liss完成签到,获得积分10
6秒前
redstone完成签到,获得积分10
6秒前
NexusExplorer应助kk采纳,获得10
6秒前
搞怪莫茗发布了新的文献求助10
7秒前
我又不乱来完成签到,获得积分10
7秒前
棒棒冰完成签到,获得积分10
7秒前
sunny完成签到,获得积分10
7秒前
7秒前
0bab2dcd发布了新的文献求助10
7秒前
7秒前
儒雅的听云完成签到 ,获得积分10
7秒前
Cindy发布了新的文献求助10
7秒前
FashionBoy应助HCT采纳,获得10
8秒前
愉快的思枫完成签到,获得积分10
8秒前
orixero应助研友_VZG64n采纳,获得10
8秒前
9秒前
9秒前
隐形曼青应助羽柒er采纳,获得10
9秒前
曾梦发布了新的文献求助10
9秒前
晴小阳完成签到,获得积分10
9秒前
棒棒冰发布了新的文献求助10
10秒前
MU发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023439
求助须知:如何正确求助?哪些是违规求助? 3563436
关于积分的说明 11342462
捐赠科研通 3294924
什么是DOI,文献DOI怎么找? 1814815
邀请新用户注册赠送积分活动 889530
科研通“疑难数据库(出版商)”最低求助积分说明 812964