材料科学
镍
电负性
阴极
电化学
晶体结构
离子
化学物理
结晶学
电极
物理化学
冶金
化学
物理
量子力学
作者
Lianshan Ni,Hongyi Chen,Wentao Deng,Baowei Wang,Jun Chen,Yu Mei,Guoqiang Zou,Hongshuai Hou,Rui Guo,Jingying Xie,Xiaobo Ji
标识
DOI:10.1002/aenm.202103757
摘要
Abstract Capacity fading and safety concerns accompanied other deep‐rooted challenges have severely hindered commercial development of Ni‐rich layered cathodes. Herein, a robust Sr‐doped Ni‐rich cathode is structurally designed by the reconstruction of the crystal lattice and electronic distribution. Notably, the orbital hybridization between Ni 3d (t 2g ) and O 2p is remarkably reinforced owing to the shortened NiO bond enabled by the electrostatic interaction between Ni and Sr atoms, giving rise to the enhanced crystal structure. Theoretically, the formation energy of oxygen vacancies is greatly increased due to the intensified electronic polarization between Ni and O states evoked by the weak electronegativity of Sr, resulting in the alleviation of lattice oxygen loss. More impressively, the distances of LiO bonds and the OLiO slab are also extended on account of the electrochemically inactive Sr ion functioning as a pillar, further promoting the transmission of lithium ions. Therefore, the as‐designed Sr‐modified NCM delivers an ultrahigh capacity retention of 98.5% after 150 cycles. This work provides a powerful mechanistic incentive to increase the stability of the crystal phase and electrochemical performance for Ni‐rich layered cathodes through appropriate chemical and mechanical engineering, facilitating the practical applications of Ni‐rich cathodes in high‐performance electric vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI