Bridging Multiscale Characterization Technologies and Digital Modeling to Evaluate Lithium Battery Full Lifecycle

材料科学 桥接(联网) 表征(材料科学) 电池(电) 计算机科学 系统工程 大数据 纳米技术 可靠性工程 功率(物理) 工程类 计算机网络 物理 量子力学 操作系统
作者
Xinhua Liu,Lisheng Zhang,Hanqing Yu,Jianan Wang,Junfu Li,Kai Yang,Yunlong Zhao,Huizhi Wang,Billy Wu,Nigel P. Brandon,Shichun Yang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:12 (33) 被引量:58
标识
DOI:10.1002/aenm.202200889
摘要

Abstract The safety, durability and power density of lithium‐ion batteries (LIBs) are currently inadequate to satisfy the continuously growing demand of the emerging battery markets. Rapid progress has been made from material engineering to system design, combining experimental results and simulations to enhance LIB performance. Limited by spatial and temporal resolution, state‐of‐the‐art advanced characterization techniques fail to fully reveal the complex multi‐scale degradation mechanism in LIBs. Strengthening interaction and iteration between characterization and modeling improves the understanding of reaction mechanisms as well as design and management of LIBs. Herein, a seed cyber hierarchy and interactional network framework is demonstrated to evaluate the overall lifecycle of LIBs. The typical examples of bridging the characterization techniques and modeling are discussed. The critical parameters extracted from multi‐scale characterization can serve as digital inputs for modeling. Furthermore, advanced computational techniques including cloud computing, big data, machine learning, and artificial intelligence can also promote the comprehensive understanding and precise control of the whole battery lifecycle. Digital twins techniques will be introduced enabling the real‐time monitoring and control of LIBs, autonomous computer‐assisted characterizations and intelligent manufacturing. It is anticipated that this work will provide a roadmap for further intensive research on developing high‐performance LIBs and intelligent battery management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助精明白风采纳,获得10
1秒前
古藤完成签到,获得积分10
1秒前
DNA甲基转移酶完成签到,获得积分10
1秒前
2秒前
wqy完成签到 ,获得积分10
4秒前
sunny完成签到,获得积分10
4秒前
空曲发布了新的文献求助10
4秒前
情怀应助sun采纳,获得10
4秒前
古藤发布了新的文献求助10
6秒前
6秒前
种草匠完成签到,获得积分10
6秒前
8秒前
8秒前
小蘑菇应助zll采纳,获得10
8秒前
雨辰发布了新的文献求助10
8秒前
勤劳的冰菱完成签到,获得积分10
9秒前
zz完成签到,获得积分10
9秒前
re6t5i8y关注了科研通微信公众号
9秒前
hty完成签到 ,获得积分10
9秒前
11秒前
精明白风发布了新的文献求助10
12秒前
热心枕头完成签到,获得积分10
13秒前
13秒前
调研昵称发布了新的文献求助10
14秒前
15秒前
ZS发布了新的文献求助10
15秒前
conghuang完成签到,获得积分10
15秒前
dalin完成签到,获得积分20
15秒前
sun完成签到,获得积分20
15秒前
Orange应助IIIris采纳,获得10
16秒前
jooe完成签到,获得积分10
16秒前
longlongzhi完成签到 ,获得积分10
17秒前
dola完成签到,获得积分10
17秒前
zhenya完成签到,获得积分10
18秒前
sun发布了新的文献求助10
18秒前
诸觅双完成签到 ,获得积分10
18秒前
19秒前
凌代萱完成签到 ,获得积分10
19秒前
20秒前
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194