Local Correlation Ensemble with GCN Based on Attention Features for Cross-domain Person Re-ID

计算机科学 聚类分析 人工智能 卷积神经网络 利用 领域(数学分析) 编码器 背景(考古学) 图形 节点(物理) 机器学习 模式识别(心理学) 数据挖掘 理论计算机科学 结构工程 生物 操作系统 数学 工程类 数学分析 古生物学 计算机安全
作者
Yue Zhang,Fanghui Zhang,Yi Jin,Yigang Cen,Viacheslav Voronin,Shaohua Wan
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2): 1-22 被引量:52
标识
DOI:10.1145/3542820
摘要

Person re-identification (Re-ID) has achieved great success in single-domain. However, it remains a challenging task to adapt a Re-ID model trained on one dataset to another one. Unsupervised domain adaption (UDA) was proposed to migrate a model from a labeled source domain to an unlabeled target domain. The main difference in the cross-domain is different background styles. Although the style transfer approach effectively reduces inter-domain gaps, it ignores the reduction of intra-class differences. Clustering-based pipelines maintain state-of-the-art performance for UDA by learning domain-independent features; however, most existing models do not sufficiently exploit the rich unlabeled samples in target domains due to unsatisfactory clustering. Thus, we propose a novel local correlation ensemble model that focuses on the diversity of intra-class information and the reliability of class centers. Specifically, a pedestrian attention module is proposed to enable the encoder to pay more attention to the person’s features to relieve interference caused by the shared background style. Furthermore, we propose a priority-distance graph convolutional network (PDGCN) module that employs a graph convolutional network network to predict the priority of a node as a class center and then calculates the distance between nodes with high priority values to screen out the class center nodes. Finally, the encoder features (local) and PDGCN features (context-aware) are combined to perform person Re-ID. The results of experiments on the large-scale public Re-ID datasets verified the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长江长发布了新的文献求助10
1秒前
895_发布了新的文献求助10
2秒前
uu发布了新的文献求助10
2秒前
tao ism完成签到,获得积分10
2秒前
3秒前
111发布了新的文献求助10
3秒前
Owen应助Gloyxtg采纳,获得10
4秒前
ysh发布了新的文献求助10
4秒前
5秒前
科研小白完成签到,获得积分10
5秒前
苏卿应助听话当小当采纳,获得10
5秒前
科研通AI5应助lxr2采纳,获得30
5秒前
andylue完成签到,获得积分10
6秒前
lingxiao完成签到,获得积分10
6秒前
6秒前
tao ism发布了新的文献求助30
6秒前
不周发布了新的文献求助10
7秒前
lcd完成签到,获得积分10
7秒前
好好好好好好啊关注了科研通微信公众号
8秒前
8秒前
9秒前
Cassie发布了新的文献求助10
9秒前
JamesPei应助华子的五A替身采纳,获得10
11秒前
加鲁鲁发布了新的文献求助10
11秒前
SYLH应助南非的猫采纳,获得10
12秒前
嗷呜嗷呜完成签到,获得积分10
12秒前
12秒前
uu完成签到,获得积分10
13秒前
wei完成签到,获得积分10
14秒前
14秒前
七七丫完成签到,获得积分10
14秒前
darkpigx完成签到,获得积分10
15秒前
亚克西完成签到,获得积分10
15秒前
隐形曼青应助swordlee采纳,获得30
15秒前
16秒前
清秀的凝荷完成签到,获得积分10
16秒前
16秒前
18秒前
ding应助sensensmart采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552652
求助须知:如何正确求助?哪些是违规求助? 3128698
关于积分的说明 9379308
捐赠科研通 2827873
什么是DOI,文献DOI怎么找? 1554775
邀请新用户注册赠送积分活动 725554
科研通“疑难数据库(出版商)”最低求助积分说明 715031