On-machine measurement method and geometrical error analysis in a multi-step processing system of an ultra-precision complex spherical surface

机械加工 夹紧 机床 过程(计算) 职位(财务) 计算机科学 机械工程 航程(航空) 领域(数学) 算法 材料科学 计算机视觉 工程类 数学 财务 纯数学 经济 复合材料 操作系统
作者
Tianji Xing,Xuesen Zhao,Luqi Song,Zhipeng Cui,Xicong Zou,Tong Sun
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:80: 161-177 被引量:9
标识
DOI:10.1016/j.jmapro.2022.05.057
摘要

In the field of ultra-precision machining, the machining accuracy and the surface quality have increased with the demand. However, due to the varying needs of different fields, the requirements for the surface shapes of workpieces are complicated. Therefore, it is necessary to use multi-process processing methods to process complex curved surfaces. However, determining how to ensure the repeated positioning accuracy of multi-process machining has been an insurmountable problem in the field of ultra-precision machining. In this study, a repeated positioning method for the processing of complex spherical surfaces was designed, and the geometric errors were analyzed. This study was based on an ultra-precise five-axis turning and milling machine. First, the processed workpiece was repeatedly clamped and the workpiece was measured by an on-machine measurement method. By processing the detection data, the position error and the pose error after repeated clamping were obtained. Then, using the detection results of the various geometric errors of the ultra-precise five-axis machine tool, random simulation experiments were performed using the homogeneous transformation matrix (HTM) and multi-body system (MBS) methods. A large number of random simulation experiments predicted the theoretical range of errors in the repeated positioning process. Finally, the processing experiment was carried out according to the designed process. The results showed that this approach could effectively solve the problem of repeated positioning in ultra-precision machining. In addition, the results of the machining experiment were in the range of the calculated error theory, which proved that the calculation model was reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王翎力完成签到,获得积分10
1秒前
潇洒的诗桃应助疯少采纳,获得20
1秒前
2秒前
小橘猫发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
SciGPT应助卡卡卡卡卡卡采纳,获得10
8秒前
9秒前
精明的芷蕾完成签到,获得积分20
11秒前
11秒前
11秒前
胖大海完成签到 ,获得积分10
12秒前
13秒前
13秒前
jj发布了新的文献求助10
13秒前
14秒前
傲娇老五完成签到 ,获得积分10
14秒前
小白狗应助安在哉采纳,获得20
15秒前
首席或雪月完成签到 ,获得积分10
15秒前
英俊的铭应助Oooo采纳,获得10
15秒前
个性的紫菜应助fountainli采纳,获得10
15秒前
研究牲发布了新的文献求助10
16秒前
17秒前
南湖秋水发布了新的文献求助10
18秒前
MROU发布了新的文献求助10
18秒前
神宝宝发布了新的文献求助10
19秒前
20秒前
科目三应助JUZI采纳,获得10
20秒前
mingming完成签到,获得积分10
20秒前
21秒前
21秒前
昌昌昌发布了新的文献求助10
22秒前
23秒前
Cindy发布了新的文献求助10
23秒前
爱听歌的菠萝完成签到,获得积分10
25秒前
大牙发布了新的文献求助10
25秒前
小橘猫发布了新的文献求助10
25秒前
打打应助醒着做梦采纳,获得10
25秒前
shawn发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308509
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506144
捐赠科研通 2616825
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649040