A shuffled cellular evolutionary grey wolf optimizer for flexible job shop scheduling problem with tree-structure job precedence constraints

作业车间调度 计算机科学 调度(生产过程) 工作车间 数学优化 流水车间调度 地铁列车时刻表 树(集合论) 分类 树形结构 作业调度程序 二叉树 算法 数学 数据库 操作系统 数学分析 排队 程序设计语言
作者
Zhenwei Zhu,Xionghui Zhou,Diansong Cao,Ming Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:125: 109235-109235 被引量:23
标识
DOI:10.1016/j.asoc.2022.109235
摘要

Along with the growing demands for customized products and small batch production, the flexible job shop manufacturing environment becomes increasingly popular. Efficient flexible job shop scheduling plays a crucial role in making quick responses to production orders with low volume and high variety. When producing complex assembly products that are comprised of multiple and multilevel intermediate parts organized as tree-structure Bills-Of-Materials (BOMs), jobs get restricted by hierarchical precedence constraints due to dependencies between manufactured parts. To cope with this condition, this paper formulates a flexible job shop scheduling problem with job precedence constraints (FJSSP-JPC). A novel shuffled cellular evolutionary grey wolf optimizer (SCEGWO) is proposed to solve FJSSP-JPC with the objective of minimizing makespan. Schedule solutions are encoded as elaborately designed triple-vectors involving the information of job sequencing, grouped operation sequencing and machine assignment, while the satisfactions of job precedence constraints are guaranteed by binary sort tree-based repair mechanism. In SCEGWO, each individual interacts with its topological cellular neighborhood by conducting a micro discrete variant of grey wolf optimizer (GWO), causing that the whole population is decomposed into multiple subpopulations which communicate by the neighborhood overlapping. Extensive experimental results demonstrate that the components of SCEGWO are effective and the proposed SCEGWO outperforms other competing algorithms significantly on the addressed problem. • Hybrid sequential and hierarchical precedence constraints are considered. • A novel shuffled cellular evolutionary grey wolf optimizer is proposed. • A three-vector encoding scheme and a repair mechanism are developed. • Extensive experimental studies verify the superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ti完成签到,获得积分10
刚刚
liuqizong123发布了新的文献求助10
1秒前
1秒前
绛仙旧友完成签到,获得积分10
2秒前
18746005898完成签到 ,获得积分10
2秒前
chenren完成签到,获得积分10
2秒前
ak枫完成签到,获得积分10
2秒前
谦让文昊完成签到,获得积分10
2秒前
爱笑的访梦完成签到,获得积分10
2秒前
2秒前
lili-完成签到,获得积分10
3秒前
gkhsdvkb完成签到 ,获得积分10
4秒前
人之路完成签到,获得积分10
4秒前
4秒前
岁月荣耀完成签到,获得积分10
5秒前
5秒前
健康的修洁完成签到 ,获得积分10
5秒前
科研通AI5应助章半雪采纳,获得10
6秒前
Q0完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
heolmes完成签到,获得积分10
7秒前
czlianjoy完成签到,获得积分10
7秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
7秒前
坦率无剑完成签到,获得积分10
7秒前
Will完成签到,获得积分10
8秒前
guoguo完成签到 ,获得积分10
8秒前
你们才来完成签到,获得积分10
8秒前
Singularity应助陌路孤星采纳,获得10
8秒前
傅31完成签到,获得积分10
10秒前
橘子哥发布了新的文献求助10
10秒前
吴必胜完成签到,获得积分10
10秒前
锺zhishui完成签到,获得积分10
11秒前
11秒前
巫马炎彬完成签到,获得积分0
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
这个硬盘完成签到 ,获得积分10
12秒前
XMFM完成签到 ,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569