Automatic fall risk assessment with Siamese network for stroke survivors using inertial sensor‐based signals

冲程(发动机) 计算机科学 卷积神经网络 陀螺仪 小波 人工智能 惯性测量装置 人工神经网络 联营 模拟 工程类 机械工程 航空航天工程
作者
Xiaomao Fan,Hailiang Wang,Yang Zhao,Hui‐Kuang Huang,Ya‐Ting Wu,Tien‐Lung Sun,Kwok Leung Tsui
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (9): 6168-6184 被引量:5
标识
DOI:10.1002/int.22838
摘要

Fall is a major threat to stroke survivors with the problems of gait and balance disorders in the rehabilitation phase following severe consequences on quality of life and a heavy burden to their families. Many solutions have been proposed to assess fall risk for elders based on inertial sensor-based signals, however, there still exists a great challenge of transferring them from elderly populations to the stroke-survivors populations as gait disorder patterns are significant difference between elders and stroke survivors. In this study, we conduct a pilot study to collect inertial sensor-based signals from stroke survivors when they performed the timed up and go test, and build an automatic fall risk assessment model with the architecture of Siamese network, with a merit of mitigating the problem of small sample size. Specifically, the proposed automatic fall risk assessment model consists of two parallel convolutional neural networks, each of which is composed of three convolutional layers, two max-pooling layers, and three fully connected layers. To utilize the space relation among accelerator-based and gyroscope-based signals, two-dimensional discrete wavelet transform extracts image-like features, wavelet coefficients, from inertial sensor-based signals as the input. Experimental results show that the proposed fall risk assessment model has achieved a promising results, which outperform cutting-edge methods with a big margin. The proposed fall risk assessment model with low computational complexity and limited memory consuming can be deployed on an embedded system to provide fall risk assessment service for stroke survivors in point-of-care environments or community settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助哒哒采纳,获得10
1秒前
卢智发布了新的文献求助10
1秒前
Akim应助小马哥采纳,获得10
2秒前
DZ发布了新的文献求助10
2秒前
2秒前
dian完成签到 ,获得积分10
2秒前
Harold发布了新的文献求助10
3秒前
3秒前
Lucky完成签到,获得积分10
3秒前
4秒前
www完成签到,获得积分10
4秒前
慕青应助糊涂的中恶采纳,获得10
4秒前
5秒前
安静语山发布了新的文献求助30
5秒前
今后应助雷行云采纳,获得10
6秒前
无花果应助阿强采纳,获得10
7秒前
端庄的吐司完成签到,获得积分10
8秒前
x5kyi发布了新的文献求助10
8秒前
9秒前
所所应助大君哥采纳,获得10
9秒前
10秒前
10秒前
自信天发布了新的文献求助30
11秒前
floating发布了新的文献求助10
11秒前
zxl完成签到,获得积分10
11秒前
12秒前
13秒前
你的风筝应助chenpy1990采纳,获得10
13秒前
JamesPei应助姆姆采纳,获得10
13秒前
hczx完成签到,获得积分10
13秒前
14秒前
挖掘机给spinor的求助进行了留言
14秒前
章鱼大丸子完成签到,获得积分10
14秒前
zxl发布了新的文献求助10
15秒前
16秒前
yyq完成签到,获得积分20
16秒前
16秒前
Lucas应助飞快的诗槐采纳,获得10
17秒前
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951401
求助须知:如何正确求助?哪些是违规求助? 3496844
关于积分的说明 11084706
捐赠科研通 3227245
什么是DOI,文献DOI怎么找? 1784364
邀请新用户注册赠送积分活动 868370
科研通“疑难数据库(出版商)”最低求助积分说明 801110