Automatic fall risk assessment with Siamese network for stroke survivors using inertial sensor‐based signals

冲程(发动机) 计算机科学 卷积神经网络 陀螺仪 小波 人工智能 惯性测量装置 人工神经网络 联营 模拟 工程类 机械工程 航空航天工程
作者
Xiaomao Fan,Hailiang Wang,Yang Zhao,Hui‐Kuang Huang,Ya‐Ting Wu,Tien‐Lung Sun,Kwok Leung Tsui
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (9): 6168-6184 被引量:5
标识
DOI:10.1002/int.22838
摘要

Fall is a major threat to stroke survivors with the problems of gait and balance disorders in the rehabilitation phase following severe consequences on quality of life and a heavy burden to their families. Many solutions have been proposed to assess fall risk for elders based on inertial sensor-based signals, however, there still exists a great challenge of transferring them from elderly populations to the stroke-survivors populations as gait disorder patterns are significant difference between elders and stroke survivors. In this study, we conduct a pilot study to collect inertial sensor-based signals from stroke survivors when they performed the timed up and go test, and build an automatic fall risk assessment model with the architecture of Siamese network, with a merit of mitigating the problem of small sample size. Specifically, the proposed automatic fall risk assessment model consists of two parallel convolutional neural networks, each of which is composed of three convolutional layers, two max-pooling layers, and three fully connected layers. To utilize the space relation among accelerator-based and gyroscope-based signals, two-dimensional discrete wavelet transform extracts image-like features, wavelet coefficients, from inertial sensor-based signals as the input. Experimental results show that the proposed fall risk assessment model has achieved a promising results, which outperform cutting-edge methods with a big margin. The proposed fall risk assessment model with low computational complexity and limited memory consuming can be deployed on an embedded system to provide fall risk assessment service for stroke survivors in point-of-care environments or community settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BlueKitty完成签到,获得积分10
1秒前
Walton完成签到,获得积分10
2秒前
cl完成签到,获得积分10
2秒前
sheep完成签到,获得积分10
2秒前
Bake完成签到 ,获得积分10
2秒前
surlamper完成签到,获得积分10
3秒前
Mo完成签到,获得积分10
3秒前
hahaha2完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
婉枫完成签到,获得积分10
4秒前
徐彬荣完成签到,获得积分10
4秒前
往昔不过微澜完成签到,获得积分10
4秒前
spider534完成签到,获得积分10
5秒前
好好应助科研通管家采纳,获得10
5秒前
好好应助科研通管家采纳,获得10
5秒前
好好应助科研通管家采纳,获得10
5秒前
好好应助科研通管家采纳,获得10
5秒前
5秒前
好好应助科研通管家采纳,获得10
5秒前
5秒前
TGU的小马同学完成签到 ,获得积分10
5秒前
5秒前
5秒前
量子咸鱼K完成签到,获得积分10
6秒前
冰冻芋头完成签到,获得积分10
6秒前
hahaha1完成签到,获得积分10
6秒前
fate完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
changjinglu发布了新的文献求助10
10秒前
风信子deon01完成签到,获得积分10
10秒前
Daisy发布了新的文献求助10
14秒前
追梦人2016完成签到 ,获得积分10
14秒前
suiyue完成签到 ,获得积分10
15秒前
杏林靴子完成签到,获得积分10
15秒前
酷波er应助jdjf采纳,获得10
15秒前
21秒前
22秒前
weila完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797