Automatic fall risk assessment with Siamese network for stroke survivors using inertial sensor‐based signals

冲程(发动机) 计算机科学 卷积神经网络 陀螺仪 小波 人工智能 惯性测量装置 人工神经网络 联营 模拟 工程类 机械工程 航空航天工程
作者
Xiaomao Fan,Hailiang Wang,Yang Zhao,Hui‐Kuang Huang,Ya‐Ting Wu,Tien‐Lung Sun,Kwok Leung Tsui
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (9): 6168-6184 被引量:5
标识
DOI:10.1002/int.22838
摘要

Fall is a major threat to stroke survivors with the problems of gait and balance disorders in the rehabilitation phase following severe consequences on quality of life and a heavy burden to their families. Many solutions have been proposed to assess fall risk for elders based on inertial sensor-based signals, however, there still exists a great challenge of transferring them from elderly populations to the stroke-survivors populations as gait disorder patterns are significant difference between elders and stroke survivors. In this study, we conduct a pilot study to collect inertial sensor-based signals from stroke survivors when they performed the timed up and go test, and build an automatic fall risk assessment model with the architecture of Siamese network, with a merit of mitigating the problem of small sample size. Specifically, the proposed automatic fall risk assessment model consists of two parallel convolutional neural networks, each of which is composed of three convolutional layers, two max-pooling layers, and three fully connected layers. To utilize the space relation among accelerator-based and gyroscope-based signals, two-dimensional discrete wavelet transform extracts image-like features, wavelet coefficients, from inertial sensor-based signals as the input. Experimental results show that the proposed fall risk assessment model has achieved a promising results, which outperform cutting-edge methods with a big margin. The proposed fall risk assessment model with low computational complexity and limited memory consuming can be deployed on an embedded system to provide fall risk assessment service for stroke survivors in point-of-care environments or community settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rubywoo关注了科研通微信公众号
1秒前
Gasol完成签到 ,获得积分10
1秒前
斯文败类应助SCO采纳,获得10
1秒前
3秒前
3秒前
3秒前
星辰大海应助emm采纳,获得10
4秒前
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
zhangfuchao完成签到,获得积分10
7秒前
风中冰香发布了新的文献求助10
7秒前
7秒前
8秒前
邹yang完成签到 ,获得积分10
8秒前
Ayaka完成签到,获得积分10
8秒前
Jasper应助纪你巴采纳,获得10
8秒前
8秒前
8秒前
LeeWX完成签到,获得积分10
8秒前
9秒前
9秒前
星辰大海应助Cx270采纳,获得10
9秒前
9秒前
Youth发布了新的文献求助10
9秒前
kiki发布了新的文献求助10
10秒前
ZYW发布了新的文献求助20
10秒前
10秒前
LeeWX发布了新的文献求助10
11秒前
大卉卉完成签到,获得积分10
11秒前
11秒前
11秒前
石豪有发布了新的文献求助10
12秒前
多伶俐发布了新的文献求助10
12秒前
可爱的函函应助克诺尔普采纳,获得10
12秒前
Lucas应助克诺尔普采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218