Automatic fall risk assessment with Siamese network for stroke survivors using inertial sensor‐based signals

冲程(发动机) 计算机科学 卷积神经网络 陀螺仪 小波 人工智能 惯性测量装置 人工神经网络 联营 模拟 工程类 机械工程 航空航天工程
作者
Xiaomao Fan,Hailiang Wang,Yang Zhao,Hui‐Kuang Huang,Ya‐Ting Wu,Tien‐Lung Sun,Kwok Leung Tsui
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (9): 6168-6184 被引量:5
标识
DOI:10.1002/int.22838
摘要

Fall is a major threat to stroke survivors with the problems of gait and balance disorders in the rehabilitation phase following severe consequences on quality of life and a heavy burden to their families. Many solutions have been proposed to assess fall risk for elders based on inertial sensor-based signals, however, there still exists a great challenge of transferring them from elderly populations to the stroke-survivors populations as gait disorder patterns are significant difference between elders and stroke survivors. In this study, we conduct a pilot study to collect inertial sensor-based signals from stroke survivors when they performed the timed up and go test, and build an automatic fall risk assessment model with the architecture of Siamese network, with a merit of mitigating the problem of small sample size. Specifically, the proposed automatic fall risk assessment model consists of two parallel convolutional neural networks, each of which is composed of three convolutional layers, two max-pooling layers, and three fully connected layers. To utilize the space relation among accelerator-based and gyroscope-based signals, two-dimensional discrete wavelet transform extracts image-like features, wavelet coefficients, from inertial sensor-based signals as the input. Experimental results show that the proposed fall risk assessment model has achieved a promising results, which outperform cutting-edge methods with a big margin. The proposed fall risk assessment model with low computational complexity and limited memory consuming can be deployed on an embedded system to provide fall risk assessment service for stroke survivors in point-of-care environments or community settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
晓畅完成签到,获得积分10
4秒前
科研通AI6.1应助对称破缺采纳,获得10
7秒前
刘十一完成签到 ,获得积分10
7秒前
7秒前
慢半拍完成签到,获得积分10
7秒前
von完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
17263365721完成签到 ,获得积分10
9秒前
冬天的回忆完成签到 ,获得积分10
9秒前
风清扬应助科研通管家采纳,获得30
10秒前
李健应助科研通管家采纳,获得10
10秒前
dangdang应助科研通管家采纳,获得40
10秒前
10秒前
Frank应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Frank应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
泽松应助科研通管家采纳,获得10
11秒前
11秒前
大个应助科研通管家采纳,获得50
11秒前
量子星尘发布了新的文献求助10
11秒前
小二郎应助Narcissus采纳,获得10
11秒前
寒冷的小熊猫完成签到,获得积分10
12秒前
13秒前
华仔应助苗苗会喵喵采纳,获得10
14秒前
16秒前
wayne完成签到,获得积分10
18秒前
zcydbttj2011完成签到 ,获得积分10
22秒前
limo完成签到 ,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060