360-degree visual saliency detection based on fast-mapped convolution and adaptive equator-bias perception

邻接表 计算机科学 展开图 卷积(计算机科学) 人工智能 插值(计算机图形学) 计算机视觉 算法 线性插值 采样(信号处理) 数学 模式识别(心理学) 滤波器(信号处理) 人工神经网络 图像(数学)
作者
Ripei Zhang,Chun-Yi Chen,Jiacheng Zhang,Jun Peng,Ahmed Mustafa Taha Alzbier
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:39 (3): 1163-1180 被引量:1
标识
DOI:10.1007/s00371-021-02395-w
摘要

The geometric distortion of the panoramic image makes the saliency detection method based on traditional 2D convolution invalid. “Mapped Convolution” can effectively solve this problem, which accepts a task- or domain-specific mapping function in the form of an adjacency list that dictates where the convolutional filters sample the input. However, when applied to panorama saliency detection, the method results in additional computational overhead due to repeatedly sampling overlapping regions of adjacent convolution positions along the longitude. In order to solve this problem, we improved the calculation process of “Mapped Convolution”. Rather than accessing adjacency list during the convolution, we first sample the panorama based on the adjacency list for only once and obtain a sampled map. This sampling process is called the decoupled sampling of “Mapped Convolution”. And then the map is convoluted in traditional 2D way, thus avoiding repeatedly sampling. In this paper, an interpolation method based on the Softmax function is also proposed and applied to the interpolation calculation of decoupled sampling. Compared with common interpolation methods such as linear interpolation, this interpolation method makes our network more efficient during training. We additionally introduce a new adaptive equator bias algorithm allowing for different attention distributions at different longitudes, which is more consistent with viewer's visual behavior. Combining the U-Autoencoder network containing the decoupled sampling with the adaptive equator bias algorithm, we construct a 360-degree visual saliency detection model. We map the original panorama into a cube, and then use the the cube isometric mapping method to remap it into a panorama and input it into the network for training. Then, the crude saliency map output by the decoder is combined with the equator bias map to obtain the final saliency map. The results show that the model proposed is superior to recent state-of-the-art models in terms of computational speed and saliency-map prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林野发布了新的文献求助10
2秒前
酷波er应助小羊采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
科研通AI5应助代何采纳,获得10
5秒前
7秒前
悦耳的子默完成签到,获得积分10
7秒前
CodeCraft应助998877剑指采纳,获得10
7秒前
悦耳的祥发布了新的文献求助10
8秒前
8秒前
子星发布了新的文献求助10
9秒前
浮游应助m30采纳,获得10
9秒前
Smiley发布了新的文献求助10
10秒前
Akim应助西子阳采纳,获得10
10秒前
Smiley发布了新的文献求助10
11秒前
贾舒涵发布了新的文献求助10
13秒前
王继刚完成签到,获得积分10
14秒前
15秒前
斯文败类应助斯文明杰采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
圆锥香蕉应助科研通管家采纳,获得20
17秒前
17秒前
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
圆锥香蕉应助科研通管家采纳,获得20
17秒前
罗勍完成签到,获得积分10
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
馆长应助科研通管家采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055