360-degree visual saliency detection based on fast-mapped convolution and adaptive equator-bias perception

邻接表 计算机科学 展开图 卷积(计算机科学) 人工智能 插值(计算机图形学) 计算机视觉 算法 线性插值 采样(信号处理) 数学 模式识别(心理学) 滤波器(信号处理) 人工神经网络 图像(数学)
作者
Ripei Zhang,Chun-Yi Chen,Jiacheng Zhang,Jun Peng,Ahmed Mustafa Taha Alzbier
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:39 (3): 1163-1180 被引量:1
标识
DOI:10.1007/s00371-021-02395-w
摘要

The geometric distortion of the panoramic image makes the saliency detection method based on traditional 2D convolution invalid. “Mapped Convolution” can effectively solve this problem, which accepts a task- or domain-specific mapping function in the form of an adjacency list that dictates where the convolutional filters sample the input. However, when applied to panorama saliency detection, the method results in additional computational overhead due to repeatedly sampling overlapping regions of adjacent convolution positions along the longitude. In order to solve this problem, we improved the calculation process of “Mapped Convolution”. Rather than accessing adjacency list during the convolution, we first sample the panorama based on the adjacency list for only once and obtain a sampled map. This sampling process is called the decoupled sampling of “Mapped Convolution”. And then the map is convoluted in traditional 2D way, thus avoiding repeatedly sampling. In this paper, an interpolation method based on the Softmax function is also proposed and applied to the interpolation calculation of decoupled sampling. Compared with common interpolation methods such as linear interpolation, this interpolation method makes our network more efficient during training. We additionally introduce a new adaptive equator bias algorithm allowing for different attention distributions at different longitudes, which is more consistent with viewer's visual behavior. Combining the U-Autoencoder network containing the decoupled sampling with the adaptive equator bias algorithm, we construct a 360-degree visual saliency detection model. We map the original panorama into a cube, and then use the the cube isometric mapping method to remap it into a panorama and input it into the network for training. Then, the crude saliency map output by the decoder is combined with the equator bias map to obtain the final saliency map. The results show that the model proposed is superior to recent state-of-the-art models in terms of computational speed and saliency-map prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SGQT完成签到,获得积分10
刚刚
一投就中发布了新的文献求助10
刚刚
susuu完成签到,获得积分10
2秒前
阳光向秋完成签到,获得积分10
2秒前
oyly完成签到 ,获得积分10
3秒前
3秒前
iNk应助六个核桃手拉手采纳,获得20
4秒前
jiya发布了新的文献求助30
4秒前
Owen应助xxx采纳,获得10
7秒前
9秒前
HXL发布了新的文献求助10
10秒前
Min完成签到,获得积分20
11秒前
rainyoun完成签到 ,获得积分10
11秒前
阳光向秋发布了新的文献求助30
13秒前
pluto应助健壮的怜烟采纳,获得50
14秒前
好好学习发布了新的文献求助10
15秒前
16秒前
HXL完成签到,获得积分20
17秒前
整齐的井完成签到,获得积分10
17秒前
19秒前
万能图书馆应助spyspy采纳,获得10
19秒前
20秒前
整齐的井发布了新的文献求助10
20秒前
领导范儿应助孙意冉采纳,获得10
21秒前
共享精神应助Julien采纳,获得10
21秒前
Flower完成签到,获得积分10
21秒前
曼仔发布了新的文献求助10
22秒前
23秒前
刻苦天寿完成签到 ,获得积分10
24秒前
夔栀发布了新的文献求助10
24秒前
抱小熊睡觉完成签到,获得积分10
25秒前
justin完成签到,获得积分10
25秒前
陆仁嘉完成签到 ,获得积分10
25秒前
领导范儿应助XWH采纳,获得10
26秒前
27秒前
haan完成签到,获得积分10
27秒前
始于足下发布了新的文献求助10
27秒前
srui0825发布了新的文献求助10
28秒前
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745678
求助须知:如何正确求助?哪些是违规求助? 3288630
关于积分的说明 10059868
捐赠科研通 3004874
什么是DOI,文献DOI怎么找? 1649899
邀请新用户注册赠送积分活动 785612
科研通“疑难数据库(出版商)”最低求助积分说明 751180