360-degree visual saliency detection based on fast-mapped convolution and adaptive equator-bias perception

邻接表 计算机科学 展开图 卷积(计算机科学) 人工智能 插值(计算机图形学) 计算机视觉 算法 线性插值 采样(信号处理) 数学 模式识别(心理学) 滤波器(信号处理) 人工神经网络 图像(数学)
作者
Ripei Zhang,Chun-Yi Chen,Jiacheng Zhang,Jun Peng,Ahmed Mustafa Taha Alzbier
出处
期刊:The Visual Computer [Springer Nature]
卷期号:39 (3): 1163-1180 被引量:1
标识
DOI:10.1007/s00371-021-02395-w
摘要

The geometric distortion of the panoramic image makes the saliency detection method based on traditional 2D convolution invalid. “Mapped Convolution” can effectively solve this problem, which accepts a task- or domain-specific mapping function in the form of an adjacency list that dictates where the convolutional filters sample the input. However, when applied to panorama saliency detection, the method results in additional computational overhead due to repeatedly sampling overlapping regions of adjacent convolution positions along the longitude. In order to solve this problem, we improved the calculation process of “Mapped Convolution”. Rather than accessing adjacency list during the convolution, we first sample the panorama based on the adjacency list for only once and obtain a sampled map. This sampling process is called the decoupled sampling of “Mapped Convolution”. And then the map is convoluted in traditional 2D way, thus avoiding repeatedly sampling. In this paper, an interpolation method based on the Softmax function is also proposed and applied to the interpolation calculation of decoupled sampling. Compared with common interpolation methods such as linear interpolation, this interpolation method makes our network more efficient during training. We additionally introduce a new adaptive equator bias algorithm allowing for different attention distributions at different longitudes, which is more consistent with viewer's visual behavior. Combining the U-Autoencoder network containing the decoupled sampling with the adaptive equator bias algorithm, we construct a 360-degree visual saliency detection model. We map the original panorama into a cube, and then use the the cube isometric mapping method to remap it into a panorama and input it into the network for training. Then, the crude saliency map output by the decoder is combined with the equator bias map to obtain the final saliency map. The results show that the model proposed is superior to recent state-of-the-art models in terms of computational speed and saliency-map prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐尔容完成签到 ,获得积分10
刚刚
刚刚
饱满的荧完成签到 ,获得积分10
刚刚
NexusExplorer应助XU采纳,获得10
刚刚
刚刚
慈祥的花瓣完成签到,获得积分10
1秒前
危机的白风完成签到,获得积分10
1秒前
顾矜应助史萌采纳,获得10
1秒前
Hyyy发布了新的文献求助10
1秒前
科研人完成签到 ,获得积分10
1秒前
wsh完成签到 ,获得积分10
2秒前
慕洋完成签到,获得积分10
2秒前
林天发布了新的文献求助10
2秒前
林海涛完成签到 ,获得积分10
2秒前
靓丽雨梅完成签到 ,获得积分10
2秒前
Rubby应助isonomia采纳,获得200
2秒前
机智向松完成签到,获得积分10
3秒前
曾经以亦完成签到,获得积分10
3秒前
3秒前
xuxingjie完成签到,获得积分10
3秒前
正直画笔完成签到 ,获得积分10
3秒前
Forward发布了新的文献求助10
4秒前
penghui完成签到,获得积分10
5秒前
捏捏捏完成签到,获得积分10
5秒前
在水一方应助lishanshan采纳,获得10
5秒前
坚强怀绿发布了新的文献求助10
5秒前
罗丹丹完成签到,获得积分10
5秒前
动听衬衫发布了新的文献求助10
6秒前
搞怪书兰完成签到,获得积分10
6秒前
mumu完成签到,获得积分10
7秒前
P_Zh_CN发布了新的文献求助10
7秒前
文艺的冬卉完成签到,获得积分20
7秒前
7秒前
7秒前
CodeCraft应助放荡不羁采纳,获得10
8秒前
传奇3应助乐事薯片噢采纳,获得10
8秒前
香蕉静芙完成签到,获得积分10
8秒前
活力的秋莲完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316202
求助须知:如何正确求助?哪些是违规求助? 4458692
关于积分的说明 13871829
捐赠科研通 4348587
什么是DOI,文献DOI怎么找? 2388260
邀请新用户注册赠送积分活动 1382364
关于科研通互助平台的介绍 1351755