Selecting Candidates for Organ‐Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics

医学 放化疗 结直肠癌 无线电技术 放射科 新辅助治疗 医学物理学 内科学 癌症 放射治疗 乳腺癌
作者
Lijuan Wan,Sun Zhuo,Wenjing Peng,Sicong Wang,Jiangtao Li,Qing Zhao,Shuhao Wang,Han Ouyang,Xinming Zhao,Shuangmei Zou,Hongmei Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1130-1142 被引量:29
标识
DOI:10.1002/jmri.28108
摘要

Background Histopathologic evaluation after surgery is the gold standard to evaluate treatment response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). However, it cannot be used to guide organ‐preserving strategies due to poor timeliness. Purpose To develop and validate a multiscale model incorporating radiomics and pathomics features for predicting pathological good response (pGR) of down‐staging to stage ypT0‐1N0 after nCRT. Study Type Retrospective. Population A total of 153 patients (median age, 55 years; 109 men; 107 training group; 46 validation group) with clinicopathologically confirmed LARC. Field Strength/Sequence A 3. 0‐T ; fast spin echo T 2 ‐weighted and single‐shot EPI diffusion‐weighted images. Assessment The differences in clinicoradiological variables between pGR and non‐pGR groups were assessed. Pretreatment and posttreatment radiomics signatures, and pathomics signature were constructed. A multiscale pGR prediction model was established. The predictive performance of the model was evaluated and compared to that of the clinicoradiological model. Statistical Tests The χ 2 test, Fisher's exact test, t ‐test, the minimum redundancy maximum relevance algorithm, the least absolute shrinkage and selection operator logistic regression algorithm, regression analysis, receiver operating characteristic curve (ROC) analysis, Delong method. P < 0.05 indicated a significant difference. Results Pretreatment radiomics signature (odds ratio [OR] = 2.53; 95% CI: 1.58–4.66), posttreatment radiomics signature (OR = 9.59; 95% CI: 3.04–41.46), and pathomics signature (OR = 3.14; 95% CI: 1.40–8.31) were independent factors for predicting pGR. The multiscale model presented good predictive performance with areas under the curve (AUC) of 0.93 (95% CI: 0.88–0.98) and 0.90 (95% CI: 0.78–1.00) in the training and validation groups, those were significantly higher than that of the clinicoradiological model with AUCs of 0.69 (95% CI: 0.55–0.82) and 0.68 (95% CI: 0.46–0.91) in both groups. Data Conclusion A model incorporating radiomics and pathomics features effectively predicted pGR after nCRT in patients with LARC. Evidence Level 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助TK采纳,获得10
刚刚
Accept发布了新的文献求助10
1秒前
王俊发布了新的文献求助10
1秒前
Akim应助vagabond采纳,获得10
3秒前
juan发布了新的文献求助10
3秒前
WSYang完成签到,获得积分10
4秒前
ZYP发布了新的文献求助10
6秒前
6秒前
7秒前
wyz发布了新的文献求助10
9秒前
Accept完成签到,获得积分20
9秒前
11秒前
11秒前
幻__完成签到 ,获得积分10
11秒前
森莺完成签到 ,获得积分10
11秒前
irisy发布了新的文献求助10
12秒前
程瑞哲发布了新的文献求助10
13秒前
14秒前
14秒前
请问完成签到,获得积分10
15秒前
lalala发布了新的文献求助10
15秒前
Taoyu完成签到 ,获得积分10
18秒前
白啦啦完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
万能图书馆应助bubble采纳,获得10
21秒前
23秒前
Alexander完成签到,获得积分10
27秒前
文静曼安发布了新的文献求助10
27秒前
28秒前
我是老大应助juan采纳,获得10
28秒前
觉主发布了新的文献求助10
28秒前
31秒前
31秒前
lalala完成签到,获得积分20
32秒前
南吕完成签到 ,获得积分10
32秒前
东东完成签到,获得积分10
33秒前
yin景景发布了新的文献求助10
35秒前
薯条完成签到,获得积分10
36秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008