谷氨酰胺
谷氨酰胺分解
癌细胞
转染
谷氨酰胺酶
基因沉默
生物化学
生物
癌症研究
细胞生物学
癌症
氨基酸
遗传学
基因
作者
Yingying Xu,Zhiguo Yu,Hao Fu,Yuedong Guo,Ping Hu,Jianlin Shi
标识
DOI:10.1021/acsami.2c00111
摘要
Glucose and glutamine are two principal nutrients in mammalian cells that provide energy and biomass for cell growth and proliferation. Especially in cancer cells, glutamine could be a main alternative for energy and biomass supply once glucose metabolism is suppressed. Therefore, single inhibition of enzymes in either glucose metabolism or glutaminolysis, though maybe efficient in vitro, is far from being satisfactory for efficient in vivo cancer therapy. Here, we proposed a new strategy for dual inhibitions on both glucose and glutamine metabolisms concurrently by silencing mutated gene Kras and glutaminase 1 (GLS1) via nanomaterial-based siKras and siGLS1 delivery, rather than conventional highly toxic chemodrugs. Such a combination therapy could overcome the challenge that glucose and glutamine are alternatives to each other in the biosynthesis and energy production for cancer cells, resulting in much elevated treatment efficacy. In addition, layered double hydroxide (LDH), the siRNA carrier, enables an enhanced gene delivery efficiency compared to the commercial transfection agent Lipofectamine 2000. Briefly, Mg-Al LDH nanosheets, loaded with siKras and siGLS1 onto their surfaces by electrostatic adsorption, could release siRNA from lysosomes into the cytoplasm via the proton sponge effect of LDH, favoring the siRNA stability and gene silencing efficiency enhancements. The thus released siRNA could downregulate the expressions of Kras, GLS1, and other enzymes involved in glucose metabolism, resulting in the downregulations of ATP and other metabolites. Such a biosafe LDH/siRNA nanomedicine is able to efficiently suppress the growth of xenografts through cancer cell proliferation suppression, displaying its great potential as a simultaneous glucose/glutamine metabolism coinhibitor for treating pancreatic cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI