光热治疗
免疫分析
材料科学
纳米技术
纳米颗粒
拉曼光谱
化学
生物
光学
物理
抗体
免疫学
作者
Huiyi Yang,Qiyi He,Mingxia Lin,Ji Li,Leheng Zhang,Huanxin Xiao,Shijia Li,Qinglan Li,Xiping Cui,Suqing Zhao
标识
DOI:10.1016/j.jhazmat.2022.129082
摘要
Multimodal lateral flow immunoassay (LFIA) has displayed its potential to improve practicability and elasticity of point-of-care testing. Herein, multifunctional core-shell-shell Au@Pt@Ag NPs loaded with dual-layer Raman reporter molecules of 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) with a characteristic combination of color-photothermal-Raman performance were constructed for colorimetric LFIA (CM-LFIA), photothermal LFIA (PT-LFIA) and surface-enhanced Raman scattering-based LFIA (SERS-LFIA), respectively. The highly specific nanoprobes, being obtained through the combination of the resulted dual-layer DTNB modified Au@Pt@Ag NPs with the antibody, were triumphantly utilized in exploring multimodal LFIA with one visual qualitative and two optional quantitative modes with excellent sensing sensitivity. Under optimal conditions, the limit of detection (LOD) for the model hazardous analyte dehydroepiandrosterone (DHEA) were 1.0 ng mL−1 for CM-LFIA, 0.42 ng mL−1 for PT-LFIA, and 0.013 ng mL−1 for SERS-LFIA, three of which were over 100-fold, 200-fold and 7 000-fold more sensitive than conventional visual AuNPs-based LFIA, respectively. In addition, the quantitative PT-LFIA and SERS-LFIA sensors worked well in spiked real samples with acceptable recoveries of 96.2 – 106.7% and 98.2 – 105.2%, respectively. This assay demonstrated that the developed multimodal LFIA had a great potential to be a powerful tool for accurate tracing hazardous analytes in complex samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI