Why does the president tweet this? Discovering reasons and contexts for politicians’ tweets from news articles

社会化媒体 政治学 计算机科学 情绪分析 万维网 情报检索 自然语言处理
作者
Ziyue Li,Hu Hang,He Wang,Luwei Cai,Haipeng Zhang,Kunpeng Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102892-102892 被引量:4
标识
DOI:10.1016/j.ipm.2022.102892
摘要

Politicians’ tweets can have important political and economic implications. However, limited context makes it hard for readers to instantly and precisely understand them, especially from a causal perspective. The triggers for these tweets may have been reported in news prior to the tweets, but simply finding similar news articles would not serve the purpose, given the following reasons. First, readers may only be interested in finding the reasons and contexts (we call causal backgrounds) for a certain part of a tweet. Intuitively, such content would be politically relevant and accord with public’s recent attention, which is not usually reflected within the context. Besides, the content should be human-readable, while the noisy and informal nature of tweets hinders regular Open Information Extraction systems. Second, similarity does not capture causality and the causality between tweet contents and news contents is beyond the scopes of causality extraction tools. Meanwhile, it will be non-trivial to construct a high-quality tweet-to-intent dataset. We propose the first end-to-end framework for discovering causal backgrounds of politicians’ tweets by: 1. Designing an Open IE system considering rule-free representations for tweets; 2. Introducing sources like Wikipedia linkage and edit history to identify focal contents; 3. Finding implicit causalities between different contexts using explicit causalities learned elsewhere. We curate a comprehensive dataset of interpretations from political journalists for 533 tweets from 5 US politicians. On average, we obtain the correct answers within top-2 recommendations. We make our dataset and framework code publicly available. • A first end-to-end framework discovering causal backgrounds for politicians’ tweets. • A clause-based Open IE system with considerations on rule-free representations. • We find implicit causalities between tweets and news articles. • Experiment results correspond well with political journalists’ analysis. • We publish a first well-curated tweet-intent-interpretation benchmark dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fancy完成签到 ,获得积分10
刚刚
1233完成签到,获得积分10
刚刚
保安发布了新的文献求助10
刚刚
1秒前
1秒前
冷静妙之发布了新的文献求助10
1秒前
暴风城第一死骑完成签到,获得积分10
2秒前
打打应助ppannnn采纳,获得10
2秒前
LZ完成签到,获得积分10
3秒前
辛勤的丝关注了科研通微信公众号
5秒前
Mrwang完成签到,获得积分10
5秒前
NexusExplorer应助luca采纳,获得10
5秒前
weiwei发布了新的文献求助10
6秒前
迦佭发布了新的文献求助20
6秒前
kdh510发布了新的文献求助10
7秒前
8秒前
10秒前
南河完成签到 ,获得积分10
10秒前
諵十一发布了新的文献求助10
10秒前
11秒前
jerry完成签到,获得积分20
11秒前
简单的念烟完成签到,获得积分10
12秒前
13秒前
爆米花应助weiwei采纳,获得10
13秒前
xiaozhu完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
爆米花应助丶氵一生里采纳,获得20
15秒前
wanci应助rjj001022采纳,获得10
16秒前
沾沾发布了新的文献求助10
16秒前
辛勤的丝发布了新的文献求助10
17秒前
刘立凡完成签到,获得积分10
17秒前
鲜于夜白发布了新的文献求助10
17秒前
白小施发布了新的文献求助10
19秒前
wsh发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
从容的巧曼完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328