Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets

土木工程 原型 建筑工程 足迹 比例(比率) 地理信息系统 建筑模型 能源消耗 能量建模 环境科学 计算机科学 运输工程 工程类 地理 地图学 模拟 文学类 艺术 电气工程 考古
作者
Deng Zhang,Yixing Chen,Jingjing Yang,Zhihua Chen
出处
期刊:Building Simulation [Springer Nature]
卷期号:15 (9): 1547-1559 被引量:82
标识
DOI:10.1007/s12273-021-0878-4
摘要

Urban building energy modeling has become an efficient way to understand urban building energy use and explore energy conservation and emission reduction potential. This paper introduced a method to identify archetype buildings and generate urban building energy models for city-scale buildings where public building information was unavailable. A case study was conducted for 68,966 buildings in Changsha city, China. First, clustering and random forest methods were used to determine the building type of each building footprint based on different GIS datasets. Then, the convolutional neural network was employed to infer the year built of commercial buildings based on historical satellite images from multiple years. The year built of residential buildings was collected from the housing website. Moreover, twenty-two building types and three vintages were selected as archetype buildings to represent 59,332 buildings, covering 87.4% of the total floor area. Ruby scripts leveraging on OpenStudio-Standards were developed to generate building energy models for the archetype buildings. Finally, monthly and annual electricity and natural gas energy use were simulated for the blocks and the entire city by EnergyPlus. The total electricity and natural gas use for the 59,332 buildings was 13,864 GWh and 23.6×106 GJ. Three energy conservation measures were evaluated to demonstrate urban energy saving potential. The proposed methods can be easily applied to other cities in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liuliu发布了新的文献求助10
3秒前
斯文败类应助叫滚滚采纳,获得10
3秒前
恋恋青葡萄完成签到,获得积分10
3秒前
科研通AI5应助迅速海云采纳,获得10
6秒前
一菩提完成签到,获得积分10
7秒前
Agernon应助大气的寻桃采纳,获得10
7秒前
fafa完成签到 ,获得积分10
7秒前
sam完成签到,获得积分10
8秒前
feifei完成签到,获得积分20
8秒前
qiqi完成签到,获得积分20
9秒前
9秒前
albertchan完成签到,获得积分10
15秒前
15秒前
feifei发布了新的文献求助10
16秒前
17秒前
魁拔蛮吉完成签到 ,获得积分10
19秒前
晓峰完成签到,获得积分20
19秒前
yearluren完成签到,获得积分10
19秒前
peiyy完成签到,获得积分10
19秒前
领导范儿应助TT采纳,获得10
24秒前
清脆代桃完成签到 ,获得积分10
24秒前
科研通AI5应助ghh采纳,获得10
24秒前
叫滚滚发布了新的文献求助10
24秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
26秒前
yeyong11完成签到,获得积分10
29秒前
CodeCraft应助柔弱的鱼采纳,获得30
30秒前
黄可以完成签到,获得积分10
30秒前
美少叔叔完成签到 ,获得积分10
31秒前
心灵美的修洁完成签到 ,获得积分10
32秒前
lzd完成签到,获得积分10
34秒前
35秒前
诸笑白发布了新的文献求助10
37秒前
37秒前
研友_LOK59L完成签到,获得积分10
39秒前
七子完成签到 ,获得积分10
40秒前
郑盼秋完成签到,获得积分10
40秒前
youjiang发布了新的文献求助10
41秒前
43秒前
孤独收割人完成签到,获得积分10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849