Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets

土木工程 原型 建筑工程 足迹 比例(比率) 地理信息系统 建筑模型 能源消耗 能量建模 环境科学 计算机科学 运输工程 工程类 地理 地图学 模拟 文学类 艺术 电气工程 考古
作者
Deng Zhang,Yixing Chen,Jingjing Yang,Zhihua Chen
出处
期刊:Building Simulation [Springer Nature]
卷期号:15 (9): 1547-1559 被引量:99
标识
DOI:10.1007/s12273-021-0878-4
摘要

Urban building energy modeling has become an efficient way to understand urban building energy use and explore energy conservation and emission reduction potential. This paper introduced a method to identify archetype buildings and generate urban building energy models for city-scale buildings where public building information was unavailable. A case study was conducted for 68,966 buildings in Changsha city, China. First, clustering and random forest methods were used to determine the building type of each building footprint based on different GIS datasets. Then, the convolutional neural network was employed to infer the year built of commercial buildings based on historical satellite images from multiple years. The year built of residential buildings was collected from the housing website. Moreover, twenty-two building types and three vintages were selected as archetype buildings to represent 59,332 buildings, covering 87.4% of the total floor area. Ruby scripts leveraging on OpenStudio-Standards were developed to generate building energy models for the archetype buildings. Finally, monthly and annual electricity and natural gas energy use were simulated for the blocks and the entire city by EnergyPlus. The total electricity and natural gas use for the 59,332 buildings was 13,864 GWh and 23.6×106 GJ. Three energy conservation measures were evaluated to demonstrate urban energy saving potential. The proposed methods can be easily applied to other cities in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15274887998完成签到,获得积分20
3秒前
大力诺言完成签到,获得积分10
8秒前
rainyoun完成签到 ,获得积分10
8秒前
xzx完成签到 ,获得积分10
11秒前
cadcae完成签到,获得积分10
11秒前
鲁卓林完成签到,获得积分10
12秒前
南风完成签到,获得积分10
12秒前
Ztf完成签到,获得积分10
14秒前
15秒前
Ztf发布了新的文献求助20
17秒前
NINI完成签到 ,获得积分10
23秒前
瀚海的雄狮完成签到,获得积分10
24秒前
优秀棒棒糖完成签到 ,获得积分10
27秒前
28秒前
Owen应助楼下太吵了采纳,获得10
33秒前
宋相甫完成签到,获得积分10
37秒前
44秒前
45秒前
mengmenglv完成签到 ,获得积分0
49秒前
51秒前
小学生完成签到 ,获得积分10
53秒前
hhh完成签到 ,获得积分10
56秒前
58秒前
59秒前
MS903完成签到,获得积分10
59秒前
英吉利25发布了新的文献求助10
1分钟前
Mark完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hzauhzau完成签到 ,获得积分10
1分钟前
1分钟前
drtheo发布了新的文献求助10
1分钟前
genova完成签到,获得积分10
1分钟前
1分钟前
酸海椒发布了新的文献求助10
1分钟前
1分钟前
lily完成签到 ,获得积分10
1分钟前
Drlee完成签到 ,获得积分10
1分钟前
英吉利25发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689418
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118