大麻酚
纳米棒
纳米技术
材料科学
拉曼光谱
基质(水族馆)
计算机科学
化学
大麻素
光学
海洋学
物理
地质学
受体
生物化学
作者
Raju Botta,Saksorn Limwichean,Nutthamon Limsuwan,Chalisa Moonlek,Mati Horprathum,Pitak Eiamchai,Chanunthorn Chananonnawathorn,Viyapol Patthanasettakul,Pongpan Chindaudom,Noppadon Nuntawong,Thitaphat Ngernsutivorakul
标识
DOI:10.1016/j.saa.2022.121598
摘要
Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI