An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection

大麻酚 纳米棒 纳米技术 材料科学 拉曼光谱 基质(水族馆) 计算机科学 化学 大麻素 光学 海洋学 物理 地质学 受体 生物化学
作者
Raju Botta,Saksorn Limwichean,Nutthamon Limsuwan,Chalisa Moonlek,Mati Horprathum,Pitak Eiamchai,Chanunthorn Chananonnawathorn,Viyapol Patthanasettakul,Pongpan Chindaudom,Noppadon Nuntawong,Thitaphat Ngernsutivorakul
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121598-121598 被引量:8
标识
DOI:10.1016/j.saa.2022.121598
摘要

Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的薯片应助lyt采纳,获得20
1秒前
sweetbearm应助寒涛先生采纳,获得10
2秒前
wanci应助YY采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
HC完成签到 ,获得积分10
6秒前
姚姚的赵赵完成签到,获得积分10
6秒前
JamesPei应助大豪子采纳,获得30
7秒前
jy发布了新的文献求助10
7秒前
7秒前
陆靖易发布了新的文献求助10
7秒前
LQW完成签到,获得积分20
8秒前
9秒前
plant完成签到,获得积分10
9秒前
lyt完成签到,获得积分10
9秒前
10秒前
11秒前
敏感网络完成签到,获得积分20
12秒前
kh453发布了新的文献求助10
12秒前
12秒前
子爵木完成签到 ,获得积分10
12秒前
HC发布了新的文献求助30
13秒前
无限鞅发布了新的文献求助10
13秒前
SherlockLiu完成签到,获得积分20
13秒前
14秒前
吴岳发布了新的文献求助10
15秒前
陆靖易完成签到,获得积分10
15秒前
17秒前
Bella完成签到 ,获得积分10
17秒前
yhl发布了新的文献求助10
18秒前
19秒前
震动的乐天完成签到,获得积分10
20秒前
21秒前
22秒前
Hello应助xuanxuan采纳,获得10
23秒前
村长热爱美丽完成签到 ,获得积分10
23秒前
一衣完成签到,获得积分20
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808