Towards automated coronary artery segmentation: A systematic review

分割 人气 计算机科学 人工智能 卷积神经网络 市场细分 深度学习 光学(聚焦) 冠状动脉 计算机视觉 机器学习 医学 动脉 外科 物理 光学 业务 营销 社会心理学 心理学
作者
Ramtin Gharleghi,Nanway Chen,Arcot Sowmya,Susann Beier
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107015-107015
标识
DOI:10.1016/j.cmpb.2022.107015
摘要

• Methods for segmenting coronary arteries are systematically reviewed. • Segmentation of the arteries are vital in both research and clinical applications. • Current trends and state of the art segmentation algorithms are explored. Background and Objective: Vessel segmentation is the first processing stage of 3D medical images for both clinical and research use. Current segmentation methods are tedious and time consuming, requiring significant manual correction and hence are infeasible to use in large data sets. Methods: Here, we review and analyse available coronary artery segmentation methods, focusing on fully automated methods capable of handling the rapidly growing medical images available. All manuscripts published since 2010 are systematically reviewed, categorised into different groups based on the approach taken, and characteristics of the different approaches as well as trends over the past decade are explored. Results: The manuscripts were divided intro three broad categories, consisting of region growing, voxelwise prediction and partitioning approaches. The most common approach overall was region growing, particularly using active contour models, however these have had a sharp fall in popularity in recent years with convolutional neural networks becoming significantly more popular. Conclusions: The systematic review of current coronary artery segmentation methods shows interesting trends, with rising popularity of machine learning methods, a focus on efficient methods, and falling popularity of computationally expensive processing steps such as vesselness and multiplanar reformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的书琴完成签到,获得积分10
刚刚
天天快乐应助杨怡诗采纳,获得10
2秒前
2秒前
复杂的蛋挞完成签到 ,获得积分10
3秒前
Neo完成签到,获得积分10
4秒前
张菁完成签到,获得积分10
4秒前
cen完成签到,获得积分10
5秒前
高高诗柳完成签到 ,获得积分10
7秒前
Hey完成签到,获得积分20
8秒前
awrawsaf完成签到 ,获得积分10
8秒前
9秒前
10秒前
yuanletong完成签到 ,获得积分10
10秒前
sptyzl完成签到 ,获得积分10
11秒前
酷炫非常完成签到 ,获得积分10
11秒前
null应助葛力采纳,获得10
12秒前
健忘的蓉完成签到 ,获得积分10
12秒前
皑皑发布了新的文献求助10
12秒前
开朗黑猫完成签到,获得积分10
13秒前
安详的惜梦完成签到 ,获得积分10
14秒前
nn发布了新的文献求助10
16秒前
17秒前
wuyuzegang应助明亮的惮采纳,获得20
19秒前
酷波er应助maxwell158采纳,获得10
19秒前
puppet完成签到 ,获得积分10
20秒前
FashionBoy应助靓丽傲玉采纳,获得10
20秒前
森莺发布了新的文献求助10
21秒前
机灵墨镜完成签到,获得积分10
23秒前
DaSheng完成签到,获得积分10
23秒前
杨怡诗发布了新的文献求助10
23秒前
觉皇完成签到,获得积分10
24秒前
24秒前
高大的羽毛完成签到,获得积分10
24秒前
ghostpants完成签到,获得积分10
24秒前
t铁核桃1985完成签到 ,获得积分10
25秒前
shanmen完成签到,获得积分10
26秒前
碧蓝世立发布了新的文献求助10
27秒前
27秒前
Dean应助ussiMi采纳,获得80
28秒前
momo发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4543360
求助须知:如何正确求助?哪些是违规求助? 3976023
关于积分的说明 12312760
捐赠科研通 3643842
什么是DOI,文献DOI怎么找? 2006722
邀请新用户注册赠送积分活动 1042015
科研通“疑难数据库(出版商)”最低求助积分说明 931179