SDCN2: A Shallow Densely Connected CNN for Multi-Purpose Image Manipulation Detection

计算机科学 卷积神经网络 残余物 人工智能 图像(数学) 领域(数学分析) 特征(语言学) 模式识别(心理学) 利用 特征提取 数字取证 计算机视觉 数据挖掘 机器学习 算法 数学 语言学 计算机安全 数学分析 哲学
作者
Gurinder Singh,Puneet Goyal
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3s): 1-22 被引量:7
标识
DOI:10.1145/3510462
摘要

Digital image information can be easily tampered with to harm the integrity of someone. Thus, recognizing the truthfulness and processing history of an image is one of the essential concerns in multimedia forensics. Numerous forensic methods have been developed by researchers with the ability to detect targeted editing operations. However, creating a unified forensic approach capable of detecting multiple image manipulations remains a challenging problem. In this article, a new general-purpose forensic approach is designed based on a shallow densely connected convolutional neural network (SDCN2) that exploits local dense connections and global residual learning. The residual domain is considered in the proposed network rather than the spatial domain to analyze the image manipulation artifacts because the residual domain is less dependent on image content information. To attain this purpose, a residual convolutional layer is employed at the beginning of the proposed model to adaptively learn the image manipulation features by suppressing the image content information. Then, the obtained image residuals or prediction error features are further processed by the shallow densely connected convolutional neural network for high-level feature extraction. In addition, the hierarchical features produced by the densely connected blocks and prediction error features are fused globally for better information flow across the network. The extensive experiment results show that the proposed scheme outperforms the existing state-of-the-art general-purpose forensic schemes even under anti-forensic attacks, when tested on large-scale datasets. The proposed model offers overall detection accuracies of 98.34% and 99.22% for BOSSBase and Dresden datasets, respectively, for multiple image manipulation detection. Moreover, the proposed network is highly efficient in terms of computational complexity as compared to the existing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助shixuyuan采纳,获得10
刚刚
Wang_ZiMo完成签到,获得积分10
刚刚
共享精神应助zhoazhoazhao123采纳,获得10
刚刚
1秒前
852应助WL6采纳,获得10
1秒前
打打应助花火采纳,获得10
2秒前
Xiaohui_Yu完成签到,获得积分10
2秒前
今后应助电磁炮采纳,获得10
2秒前
金开完成签到,获得积分10
3秒前
3秒前
Lucas应助仙女采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
小皮发布了新的文献求助10
6秒前
old赵应助威化蛋卷采纳,获得50
6秒前
7秒前
7秒前
8秒前
8秒前
Owen应助不会起名o1o采纳,获得10
9秒前
HJJHJH应助方梓言采纳,获得30
9秒前
haoq发布了新的文献求助10
10秒前
CodeCraft应助艾伊采纳,获得30
10秒前
yyyyyyy发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
李健的小迷弟应助zzz采纳,获得10
11秒前
闪闪白秋完成签到,获得积分10
11秒前
old赵应助念念采纳,获得10
12秒前
月月发布了新的文献求助10
13秒前
13秒前
magie完成签到,获得积分10
13秒前
已歌完成签到 ,获得积分10
13秒前
14秒前
suki完成签到,获得积分10
14秒前
qingfeng完成签到,获得积分10
14秒前
14秒前
15秒前
斯文败类应助Qps采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026