SDCN2: A Shallow Densely Connected CNN for Multi-Purpose Image Manipulation Detection

计算机科学 卷积神经网络 残余物 人工智能 图像(数学) 领域(数学分析) 特征(语言学) 模式识别(心理学) 利用 特征提取 数字取证 计算机视觉 数据挖掘 机器学习 算法 数学 数学分析 语言学 哲学 计算机安全
作者
Gurinder Singh,Puneet Goyal
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3s): 1-22 被引量:7
标识
DOI:10.1145/3510462
摘要

Digital image information can be easily tampered with to harm the integrity of someone. Thus, recognizing the truthfulness and processing history of an image is one of the essential concerns in multimedia forensics. Numerous forensic methods have been developed by researchers with the ability to detect targeted editing operations. However, creating a unified forensic approach capable of detecting multiple image manipulations remains a challenging problem. In this article, a new general-purpose forensic approach is designed based on a shallow densely connected convolutional neural network (SDCN2) that exploits local dense connections and global residual learning. The residual domain is considered in the proposed network rather than the spatial domain to analyze the image manipulation artifacts because the residual domain is less dependent on image content information. To attain this purpose, a residual convolutional layer is employed at the beginning of the proposed model to adaptively learn the image manipulation features by suppressing the image content information. Then, the obtained image residuals or prediction error features are further processed by the shallow densely connected convolutional neural network for high-level feature extraction. In addition, the hierarchical features produced by the densely connected blocks and prediction error features are fused globally for better information flow across the network. The extensive experiment results show that the proposed scheme outperforms the existing state-of-the-art general-purpose forensic schemes even under anti-forensic attacks, when tested on large-scale datasets. The proposed model offers overall detection accuracies of 98.34% and 99.22% for BOSSBase and Dresden datasets, respectively, for multiple image manipulation detection. Moreover, the proposed network is highly efficient in terms of computational complexity as compared to the existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Derik发布了新的文献求助10
刚刚
狂风阿来完成签到 ,获得积分10
1秒前
whitedawn完成签到 ,获得积分10
1秒前
郭正霄完成签到,获得积分10
1秒前
1秒前
linciko完成签到,获得积分10
1秒前
火星上的雨柏完成签到 ,获得积分10
2秒前
大方芾发布了新的文献求助10
2秒前
东木应助江屿采纳,获得20
2秒前
苦雨完成签到,获得积分10
2秒前
领导范儿应助我迷了鹿采纳,获得10
3秒前
guojing1321发布了新的文献求助10
3秒前
啦啦啦完成签到,获得积分10
3秒前
TuT完成签到,获得积分10
3秒前
爱听歌的夏烟完成签到,获得积分10
4秒前
英姑应助yyl采纳,获得10
4秒前
deadman发布了新的文献求助10
4秒前
布溜发布了新的文献求助10
4秒前
5秒前
5秒前
hahage完成签到,获得积分10
5秒前
沐风完成签到,获得积分20
5秒前
YJ完成签到,获得积分10
6秒前
6秒前
selena完成签到,获得积分20
6秒前
163发布了新的文献求助10
6秒前
机灵一兰发布了新的文献求助10
7秒前
hukun100完成签到,获得积分10
7秒前
7秒前
7秒前
友好的尔容完成签到,获得积分10
7秒前
7秒前
sherry完成签到,获得积分10
7秒前
haha完成签到,获得积分10
8秒前
冲冲冲完成签到,获得积分10
8秒前
lotu_fr完成签到,获得积分10
9秒前
田様应助SYY采纳,获得10
10秒前
zhishiyumi发布了新的文献求助10
10秒前
吴学仕完成签到,获得积分10
10秒前
Owen应助guojing1321采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582