清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SDCN2: A Shallow Densely Connected CNN for Multi-Purpose Image Manipulation Detection

计算机科学 卷积神经网络 残余物 人工智能 图像(数学) 领域(数学分析) 特征(语言学) 模式识别(心理学) 利用 特征提取 数字取证 计算机视觉 数据挖掘 机器学习 算法 数学 语言学 计算机安全 数学分析 哲学
作者
Gurinder Singh,Puneet Goyal
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (3s): 1-22 被引量:7
标识
DOI:10.1145/3510462
摘要

Digital image information can be easily tampered with to harm the integrity of someone. Thus, recognizing the truthfulness and processing history of an image is one of the essential concerns in multimedia forensics. Numerous forensic methods have been developed by researchers with the ability to detect targeted editing operations. However, creating a unified forensic approach capable of detecting multiple image manipulations remains a challenging problem. In this article, a new general-purpose forensic approach is designed based on a shallow densely connected convolutional neural network (SDCN2) that exploits local dense connections and global residual learning. The residual domain is considered in the proposed network rather than the spatial domain to analyze the image manipulation artifacts because the residual domain is less dependent on image content information. To attain this purpose, a residual convolutional layer is employed at the beginning of the proposed model to adaptively learn the image manipulation features by suppressing the image content information. Then, the obtained image residuals or prediction error features are further processed by the shallow densely connected convolutional neural network for high-level feature extraction. In addition, the hierarchical features produced by the densely connected blocks and prediction error features are fused globally for better information flow across the network. The extensive experiment results show that the proposed scheme outperforms the existing state-of-the-art general-purpose forensic schemes even under anti-forensic attacks, when tested on large-scale datasets. The proposed model offers overall detection accuracies of 98.34% and 99.22% for BOSSBase and Dresden datasets, respectively, for multiple image manipulation detection. Moreover, the proposed network is highly efficient in terms of computational complexity as compared to the existing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
Jia发布了新的文献求助10
20秒前
瑞葛发布了新的文献求助10
54秒前
2分钟前
muriel完成签到,获得积分10
3分钟前
Yolo完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Sebastian完成签到,获得积分10
4分钟前
辉辉028发布了新的文献求助10
4分钟前
逗逗豆芽发布了新的文献求助10
4分钟前
逗逗豆芽完成签到,获得积分10
4分钟前
5分钟前
辉辉028完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
红油曲奇完成签到,获得积分10
6分钟前
6分钟前
6分钟前
zhangshenlan完成签到 ,获得积分10
7分钟前
天天快乐应助科研通管家采纳,获得10
7分钟前
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
隐形问萍发布了新的文献求助10
7分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213132
求助须知:如何正确求助?哪些是违规求助? 2861948
关于积分的说明 8131243
捐赠科研通 2527901
什么是DOI,文献DOI怎么找? 1361934
科研通“疑难数据库(出版商)”最低求助积分说明 643561
邀请新用户注册赠送积分活动 615885