Cross‐domain opinion classification via aspect analysis and attention sharing mechanism

计算机科学 人工智能 分类器(UML) 杠杆(统计) 机器学习 学习迁移 深度学习 情绪分析 机制(生物学) 领域(数学分析) 自然语言处理 数学 认识论 数学分析 哲学
作者
Rahul Kumar Singh,Manoj Kumar Sachan,Ram Bahadur Patel
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
标识
DOI:10.1002/cpe.6957
摘要

The purpose of cross-domain opinion classification is to leverage useful information acquired from the source domain to train a classifier for opinion classification in the target domain, which has a huge amount of unlabeled data. An opinion classifier trained on a specific domain usually acts poorly, when directly employed to another domain. Annotating the data for all the domains is a laborious and costly process. The majority of available approaches are centered on identifying invariant features among domains. Unluckily, they are unable to properly capture the context within the sentences and better utilization of unlabeled data. To properly address this issue, we propose an aspect-based attention model for cross-domain opinion classification. By incorporating knowledge of aspects and sentences, the proposed model provides a transfer mechanism for better-transferring opinions among domains. We introduce two learning networks, first learning network aims to recognize the shared features between domains, while the purpose of the second learning network is to extract the information from the aspects by utilizing shared words as a bridge. We benefit from BERT and bidirectional gated recurrent unit to get a deep understanding and deep level semantic information of the text. Further, the joint attention learning mechanism is performed for these two learning modules so that the aspects and sentences can impact the resulting opinion expression. In addition, we introduce a gradient reversal layer to obtain invariance features. The comprehensive experiments are performed on Amazon multidomain product datasets and show the effectiveness and significance of the proposed model over state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
lewisll完成签到,获得积分10
5秒前
6秒前
烟花应助JC3250T采纳,获得10
6秒前
恩雁发布了新的文献求助10
6秒前
8秒前
兰亭序发布了新的文献求助10
8秒前
小马甲应助六个核桃采纳,获得10
8秒前
乐仔驳回了SciGPT应助
8秒前
chHe发布了新的文献求助10
10秒前
赘婿应助迷人素采纳,获得10
10秒前
ChanghuoC完成签到 ,获得积分10
10秒前
ice完成签到,获得积分10
11秒前
宇文远锋发布了新的文献求助10
12秒前
17秒前
17秒前
胡不言完成签到,获得积分10
19秒前
含蓄小兔子完成签到 ,获得积分10
20秒前
Owen应助chHe采纳,获得10
21秒前
迷人素发布了新的文献求助10
22秒前
隐形曼青应助ccccc1998采纳,获得10
24秒前
思源应助务实的易真采纳,获得30
24秒前
25秒前
Jasper应助迅速的幻雪采纳,获得10
27秒前
上官若男应助迷人素采纳,获得10
28秒前
重庆马思纯完成签到,获得积分10
30秒前
31秒前
椿翊完成签到,获得积分10
33秒前
34秒前
35秒前
DY完成签到,获得积分10
36秒前
36秒前
脑洞疼应助iuv采纳,获得10
37秒前
40秒前
JIANGCHUNYAN完成签到,获得积分10
40秒前
A吞完成签到,获得积分20
43秒前
JIANGCHUNYAN发布了新的文献求助10
45秒前
JamesPei应助兴奋悟空采纳,获得10
45秒前
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2812994
关于积分的说明 7898049
捐赠科研通 2471906
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129