Cross‐domain opinion classification via aspect analysis and attention sharing mechanism

计算机科学 人工智能 分类器(UML) 杠杆(统计) 机器学习 学习迁移 深度学习 情绪分析 机制(生物学) 领域(数学分析) 自然语言处理 数学分析 哲学 数学 认识论
作者
Rahul Kumar Singh,Manoj Kumar Sachan,Ram Bahadur Patel
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
标识
DOI:10.1002/cpe.6957
摘要

The purpose of cross-domain opinion classification is to leverage useful information acquired from the source domain to train a classifier for opinion classification in the target domain, which has a huge amount of unlabeled data. An opinion classifier trained on a specific domain usually acts poorly, when directly employed to another domain. Annotating the data for all the domains is a laborious and costly process. The majority of available approaches are centered on identifying invariant features among domains. Unluckily, they are unable to properly capture the context within the sentences and better utilization of unlabeled data. To properly address this issue, we propose an aspect-based attention model for cross-domain opinion classification. By incorporating knowledge of aspects and sentences, the proposed model provides a transfer mechanism for better-transferring opinions among domains. We introduce two learning networks, first learning network aims to recognize the shared features between domains, while the purpose of the second learning network is to extract the information from the aspects by utilizing shared words as a bridge. We benefit from BERT and bidirectional gated recurrent unit to get a deep understanding and deep level semantic information of the text. Further, the joint attention learning mechanism is performed for these two learning modules so that the aspects and sentences can impact the resulting opinion expression. In addition, we introduce a gradient reversal layer to obtain invariance features. The comprehensive experiments are performed on Amazon multidomain product datasets and show the effectiveness and significance of the proposed model over state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宸5931完成签到,获得积分10
刚刚
刚刚
刚刚
CDN完成签到,获得积分20
1秒前
英俊的铭应助快乐采纳,获得10
1秒前
虚幻双双发布了新的文献求助10
1秒前
Blank完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助lx采纳,获得10
1秒前
大方依玉完成签到 ,获得积分10
2秒前
2秒前
小马甲应助charm12采纳,获得10
3秒前
西部牛仔发布了新的文献求助10
3秒前
3秒前
大个应助fanicky采纳,获得10
4秒前
4秒前
可不关注了科研通微信公众号
4秒前
七七发布了新的文献求助10
4秒前
orixero应助Xinwen0322采纳,获得10
4秒前
ZC完成签到,获得积分10
5秒前
书雪发布了新的文献求助10
5秒前
俞若枫完成签到,获得积分0
5秒前
今后应助wu采纳,获得10
5秒前
可靠之玉发布了新的文献求助10
6秒前
深情安青应助交理采纳,获得10
6秒前
所所应助敏敏采纳,获得10
6秒前
6秒前
吴威武发布了新的文献求助100
6秒前
JC完成签到,获得积分10
7秒前
Nora完成签到,获得积分10
7秒前
独特乘云完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助dog采纳,获得10
8秒前
思源应助wsz采纳,获得10
8秒前
9秒前
9秒前
微笑柜子发布了新的文献求助10
10秒前
10秒前
共享精神应助西部牛仔采纳,获得10
10秒前
wjh发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646