Cross‐domain opinion classification via aspect analysis and attention sharing mechanism

计算机科学 人工智能 分类器(UML) 杠杆(统计) 机器学习 学习迁移 深度学习 情绪分析 机制(生物学) 领域(数学分析) 自然语言处理 数学 认识论 数学分析 哲学
作者
Rahul Kumar Singh,Manoj Kumar Sachan,Ram Bahadur Patel
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
标识
DOI:10.1002/cpe.6957
摘要

The purpose of cross-domain opinion classification is to leverage useful information acquired from the source domain to train a classifier for opinion classification in the target domain, which has a huge amount of unlabeled data. An opinion classifier trained on a specific domain usually acts poorly, when directly employed to another domain. Annotating the data for all the domains is a laborious and costly process. The majority of available approaches are centered on identifying invariant features among domains. Unluckily, they are unable to properly capture the context within the sentences and better utilization of unlabeled data. To properly address this issue, we propose an aspect-based attention model for cross-domain opinion classification. By incorporating knowledge of aspects and sentences, the proposed model provides a transfer mechanism for better-transferring opinions among domains. We introduce two learning networks, first learning network aims to recognize the shared features between domains, while the purpose of the second learning network is to extract the information from the aspects by utilizing shared words as a bridge. We benefit from BERT and bidirectional gated recurrent unit to get a deep understanding and deep level semantic information of the text. Further, the joint attention learning mechanism is performed for these two learning modules so that the aspects and sentences can impact the resulting opinion expression. In addition, we introduce a gradient reversal layer to obtain invariance features. The comprehensive experiments are performed on Amazon multidomain product datasets and show the effectiveness and significance of the proposed model over state-of-the-art techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NCS完成签到,获得积分10
刚刚
刚刚
刚刚
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
cattyji完成签到,获得积分10
3秒前
3秒前
4秒前
热情魔镜发布了新的文献求助10
4秒前
xm发布了新的文献求助10
6秒前
温婉的如波完成签到,获得积分10
6秒前
meng发布了新的文献求助10
6秒前
6秒前
开朗艳一发布了新的文献求助10
7秒前
zoe完成签到 ,获得积分10
7秒前
7秒前
7秒前
汤姆猫发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
司徒文青应助顾白凡采纳,获得50
11秒前
斯文吐司完成签到 ,获得积分10
12秒前
CodeCraft应助开朗艳一采纳,获得10
12秒前
13秒前
13秒前
快乐随心完成签到 ,获得积分10
13秒前
哈哈完成签到,获得积分10
14秒前
王也发布了新的文献求助10
14秒前
Easter发布了新的文献求助10
15秒前
15秒前
Stella应助stevenli采纳,获得10
15秒前
cyclone发布了新的文献求助10
15秒前
SciGPT应助stevenli采纳,获得50
15秒前
万能图书馆应助邱海华采纳,获得10
15秒前
xx发布了新的文献求助10
15秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584225
求助须知:如何正确求助?哪些是违规求助? 4667748
关于积分的说明 14769485
捐赠科研通 4610238
什么是DOI,文献DOI怎么找? 2529727
邀请新用户注册赠送积分活动 1498707
关于科研通互助平台的介绍 1467270