已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning–Based Automation of Scan-to-BIM with Modeling Objects from Occluded Point Clouds

点云 建筑信息建模 最小边界框 计算机科学 自动化 跳跃式监视 过程(计算) 分割 点(几何) 参数统计 人工智能 对象(语法) 深度学习 计算机视觉 工程类 图像(数学) 机械工程 统计 几何学 数学 相容性(地球化学) 化学工程 操作系统
作者
Jun‐Woo Park,Jaehong Kim,Dong-Yeop Lee,Kwangbok Jeong,Jaewook Lee,Hakpyeong Kim,Taehoon Hong
出处
期刊:Journal of Management in Engineering [American Society of Civil Engineers]
卷期号:38 (4) 被引量:26
标识
DOI:10.1061/(asce)me.1943-5479.0001055
摘要

As-built building information modeling (BIM) currently is regarded as a tool with the potential to manage buildings efficiently in the operation and maintenance phases. However, as-built BIM modeling is a labor-intensive process that requires considerable cost and time in modeling existing buildings. Although active research on scan-to-BIM automation has addressed this issue, previous studies modeled only major objects such as walls, floors, and ceilings, consequently requiring modeling other objects in indoor spaces. In addition, there was a limitation in modeling objects located in the occluded areas of scanned point clouds. Therefore, this study extracted various indoor objects from a point cloud based on deep-learning, and compensated for incomplete object information from occluded point clouds for automating the process of scan-to-BIM. The number of object classes extracted from the semantic segmentation of a deep learning network was increased to 13, and spatial relationships between objects were defined to improve the accuracy of bounding boxes extracted from point clouds. Furthermore, a parametric algorithm was developed to match the bounding boxes and objects in a BIM library to generate BIM models automatically. In a case study involving an office room, the accuracy of the bounding boxes of some object classes improved by as much as 53.33%. The study verified the feasibility of the proposed method of scan-to-BIM automation for the three-dimensional (3D) reality capture of existing buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
forever完成签到 ,获得积分10
1秒前
查查完成签到,获得积分10
2秒前
阿肯李发布了新的文献求助10
2秒前
隐形曼青应助尊敬的芷卉采纳,获得10
4秒前
泌尿小周完成签到 ,获得积分10
4秒前
乐乐应助神马研通采纳,获得10
4秒前
6秒前
7秒前
田様应助kjwu采纳,获得10
8秒前
科研通AI5应助阿肯李采纳,获得10
8秒前
阿托伐他汀完成签到 ,获得积分10
9秒前
9秒前
高高呀发布了新的文献求助10
10秒前
小呀嘛小二郎完成签到 ,获得积分10
13秒前
科研小辣椒2完成签到,获得积分20
13秒前
14秒前
14秒前
小书虫完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
17秒前
Jasper应助杜兰特工队采纳,获得10
17秒前
lsl完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
鲤鱼芷波发布了新的文献求助10
21秒前
kjwu发布了新的文献求助10
22秒前
清脆慕儿发布了新的文献求助10
23秒前
共享精神应助琪筱采纳,获得10
25秒前
26秒前
求助发布了新的文献求助10
26秒前
小丁发布了新的文献求助30
26秒前
27秒前
28秒前
慕青应助高高呀采纳,获得10
30秒前
tudoser发布了新的文献求助10
31秒前
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477194
求助须知:如何正确求助?哪些是违规求助? 3068711
关于积分的说明 9109194
捐赠科研通 2760147
什么是DOI,文献DOI怎么找? 1514673
邀请新用户注册赠送积分活动 700431
科研通“疑难数据库(出版商)”最低求助积分说明 699509