Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT

医学 心房颤动 逻辑回归 内科学 队列 体质指数 核医学 放射科 心脏病学
作者
Lu Zhang,Zhihan Xu,Beibei Jiang,Yaping Zhang,Lingyun Wang,Geertruida H deBock,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1135) 被引量:2
标识
DOI:10.1259/bjr.20211274
摘要

The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced (n = 200) or non-enhanced (n = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.In the test cohort of contrast-enhanced scanning (n = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's p = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model (p = 0.01). In the test cohort of non-enhanced scanning (n = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model (p < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all p > 0.05).EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助美好斓采纳,获得10
1秒前
1秒前
LYZSh发布了新的文献求助10
1秒前
科研通AI6应助ccccccccccccc采纳,获得10
2秒前
3秒前
leiyuu发布了新的文献求助10
4秒前
BowieHuang应助慧慧采纳,获得10
4秒前
4秒前
诚心的初曼完成签到,获得积分10
5秒前
时镜完成签到,获得积分10
5秒前
sghsh完成签到,获得积分10
5秒前
桐桐应助向优秀的人靠近采纳,获得10
6秒前
在水一方应助核桃采纳,获得30
6秒前
AD应助核桃采纳,获得10
7秒前
斯文败类应助核桃采纳,获得10
7秒前
LHT发布了新的文献求助10
7秒前
852应助核桃采纳,获得10
7秒前
7秒前
肖墨应助核桃采纳,获得50
7秒前
可爱的函函应助核桃采纳,获得10
7秒前
yyc完成签到,获得积分10
7秒前
小蘑菇应助核桃采纳,获得10
7秒前
搜集达人应助核桃采纳,获得10
7秒前
彭于晏应助核桃采纳,获得10
7秒前
搜集达人应助核桃采纳,获得10
7秒前
Evaporate发布了新的文献求助10
7秒前
7秒前
情怀应助Cindy采纳,获得10
7秒前
好运一点应助友好秋柔采纳,获得10
8秒前
睡醒了完成签到,获得积分10
8秒前
进取拼搏完成签到,获得积分10
8秒前
小鱼美美发布了新的文献求助10
8秒前
yiyi完成签到,获得积分10
9秒前
9秒前
黄宇阳发布了新的文献求助10
9秒前
9秒前
小白飞526完成签到,获得积分10
9秒前
10秒前
10秒前
顾易完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592546
求助须知:如何正确求助?哪些是违规求助? 4678486
关于积分的说明 14805429
捐赠科研通 4641796
什么是DOI,文献DOI怎么找? 2533998
邀请新用户注册赠送积分活动 1502102
关于科研通互助平台的介绍 1469205