Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT

医学 心房颤动 逻辑回归 内科学 队列 体质指数 核医学 放射科 心脏病学
作者
Lu Zhang,Zhihan Xu,Beibei Jiang,Yaping Zhang,Lingyun Wang,Geertruida H deBock,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1135) 被引量:2
标识
DOI:10.1259/bjr.20211274
摘要

The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced (n = 200) or non-enhanced (n = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.In the test cohort of contrast-enhanced scanning (n = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's p = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model (p = 0.01). In the test cohort of non-enhanced scanning (n = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model (p < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all p > 0.05).EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助李白白白采纳,获得10
刚刚
lrid完成签到,获得积分10
2秒前
3秒前
ao发布了新的文献求助10
3秒前
浮游应助草木采纳,获得10
4秒前
陈杰发布了新的文献求助10
5秒前
Criminology34应助宋佳荟采纳,获得10
6秒前
CipherSage应助的卢小马采纳,获得10
6秒前
dddnnn发布了新的文献求助10
6秒前
活泼的石头完成签到,获得积分10
7秒前
可爱的函函应助发文必过采纳,获得10
8秒前
8秒前
魔幻的心情完成签到,获得积分10
9秒前
李明完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
na发布了新的文献求助10
13秒前
Baili发布了新的文献求助10
13秒前
周文丽发布了新的文献求助10
14秒前
15秒前
15秒前
123完成签到,获得积分20
16秒前
yzq完成签到 ,获得积分10
16秒前
dddnnn完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
鹤轩完成签到,获得积分20
20秒前
小马甲应助一汪无前采纳,获得10
20秒前
20秒前
三腔二囊管完成签到,获得积分10
20秒前
22秒前
22秒前
22秒前
xy发布了新的文献求助10
23秒前
sdysdbd完成签到,获得积分10
24秒前
默幻弦完成签到,获得积分10
24秒前
ding应助dddd采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905