Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT

医学 心房颤动 逻辑回归 内科学 队列 体质指数 核医学 放射科 心脏病学
作者
Lu Zhang,Zhihan Xu,Beibei Jiang,Yaping Zhang,Lingyun Wang,Geertruida H deBock,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1135) 被引量:2
标识
DOI:10.1259/bjr.20211274
摘要

The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced (n = 200) or non-enhanced (n = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.In the test cohort of contrast-enhanced scanning (n = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's p = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model (p = 0.01). In the test cohort of non-enhanced scanning (n = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model (p < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all p > 0.05).EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助王女士采纳,获得10
刚刚
nannan发布了新的文献求助10
刚刚
刚刚
Ellen完成签到,获得积分10
1秒前
善学以致用应助fun采纳,获得10
1秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
1秒前
Hello应助夏安采纳,获得10
1秒前
yeoyoo驳回了mono应助
1秒前
123完成签到,获得积分20
1秒前
2秒前
张肥肥发布了新的文献求助10
2秒前
2秒前
cuicy发布了新的文献求助10
2秒前
2秒前
领导范儿应助脱贫攻坚采纳,获得10
3秒前
科研通AI6应助钱钱采纳,获得10
3秒前
端庄沉鱼发布了新的文献求助10
3秒前
Hello应助电池博士采纳,获得10
3秒前
科研通AI6应助风中泰坦采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
水何澹澹完成签到,获得积分0
4秒前
4秒前
4秒前
5秒前
5秒前
杯莫停完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
独孤刘完成签到,获得积分10
6秒前
动听健柏发布了新的文献求助10
7秒前
7秒前
DrSong发布了新的文献求助30
7秒前
Jasper应助123采纳,获得10
7秒前
让我再眯一会儿完成签到 ,获得积分10
7秒前
真实的麦片完成签到,获得积分10
7秒前
Vivifang应助赵哼哼采纳,获得10
7秒前
脑洞疼应助典雅的俊驰采纳,获得10
8秒前
DDDDgx发布了新的文献求助10
8秒前
Hello应助玊尔采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853