Machine-learning-based radiomics identifies atrial fibrillation on the epicardial fat in contrast-enhanced and non-enhanced chest CT

医学 心房颤动 逻辑回归 内科学 队列 体质指数 核医学 放射科 心脏病学
作者
Lu Zhang,Zhihan Xu,Beibei Jiang,Yaping Zhang,Lingyun Wang,Geertruida H deBock,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1135) 被引量:2
标识
DOI:10.1259/bjr.20211274
摘要

The purpose is to establish and validate a machine-learning-derived radiomics approach to determine the existence of atrial fibrillation (AF) by analyzing epicardial adipose tissue (EAT) in CT images.Patients with AF based on electrocardiographic tracing who underwent contrast-enhanced (n = 200) or non-enhanced (n = 300) chest CT scans were analyzed retrospectively. After EAT segmentation and radiomics feature extraction, the segmented EAT yielded 1691 radiomics features. The most contributive features to AF were selected by the Boruta algorithm and machine-learning-based random forest algorithm, and combined to construct a radiomics signature (EAT-score). Multivariate logistic regression was used to build clinical factor and nested models.In the test cohort of contrast-enhanced scanning (n = 60/200), the AUC of EAT-score for identifying patients with AF was 0.92 (95%CI: 0.84-1.00), higher than 0.71 (0.58-0.85) of the clinical factor model (total cholesterol and body mass index) (DeLong's p = 0.01), and higher than 0.73 (0.61-0.86) of the EAT volume model (p = 0.01). In the test cohort of non-enhanced scanning (n = 100/300), the AUC of EAT-score was 0.85 (0.77-0.92), higher than that of the CT attenuation model (p < 0.001). The two nested models (EAT-score+volume and EAT-score+volume+clinical factors) for contrast-enhanced scan and one (EAT-score+CT attenuation) for non-enhanced scan showed similar AUCs with that of EAT-score (all p > 0.05).EAT-score generated by machine-learning-based radiomics achieved high performance in identifying patients with AF.A radiomics analysis based on machine learning allows for the identification of AF on the EAT in contrast-enhanced and non-enhanced chest CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiT-07发布了新的文献求助10
1秒前
韵掀发布了新的文献求助10
2秒前
2秒前
Camellia发布了新的文献求助10
2秒前
李嘉琪发布了新的文献求助10
3秒前
orixero应助HJL采纳,获得10
5秒前
zj发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
6秒前
7秒前
California完成签到,获得积分10
7秒前
hhhh发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
宋昊完成签到,获得积分10
10秒前
CipherSage应助李嘉琪采纳,获得20
10秒前
杨杨发布了新的文献求助50
10秒前
Outsider完成签到,获得积分10
11秒前
八二年葡萄糖完成签到 ,获得积分10
11秒前
11秒前
kaka发布了新的文献求助10
11秒前
zhuwenjian发布了新的文献求助10
12秒前
赵李奕安完成签到,获得积分10
12秒前
orixero应助LiT-07采纳,获得10
12秒前
xdedd完成签到,获得积分10
13秒前
阿涛完成签到,获得积分10
13秒前
kjhkj发布了新的文献求助10
13秒前
bkagyin应助Dreambayer采纳,获得10
14秒前
14秒前
14秒前
Lucas应助臭臭采纳,获得10
15秒前
折镜发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721