Achieving Online Regression Performance of LSTMs With Simple RNNs.

人工神经网络 算法 模式识别(心理学)
作者
N. Mert Vural,Fatih Ilhan,Selim Firat Yilmaz,Salih Ergut,Suleyman S. Kozat
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2021.3086029
摘要

Recurrent neural networks (RNNs) are widely used for online regression due to their ability to generalize nonlinear temporal dependencies. As an RNN model, long short-term memory networks (LSTMs) are commonly preferred in practice, as these networks are capable of learning long-term dependencies while avoiding the vanishing gradient problem. However, due to their large number of parameters, training LSTMs requires considerably longer training time compared to simple RNNs (SRNNs). In this article, we achieve the online regression performance of LSTMs with SRNNs efficiently. To this end, we introduce a first-order training algorithm with a linear time complexity in the number of parameters. We show that when SRNNs are trained with our algorithm, they provide very similar regression performance with the LSTMs in two to three times shorter training time. We provide strong theoretical analysis to support our experimental results by providing regret bounds on the convergence rate of our algorithm. Through an extensive set of experiments, we verify our theoretical work and demonstrate significant performance improvements of our algorithm with respect to LSTMs and the other state-of-the-art learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安静静槐完成签到,获得积分20
1秒前
天天快乐应助小刘要加油采纳,获得10
2秒前
4秒前
4秒前
5秒前
嗷呜嗷呜完成签到,获得积分10
5秒前
11驳回了顾矜应助
5秒前
标致溪流发布了新的文献求助10
6秒前
6秒前
桐桐应助机智斩采纳,获得10
8秒前
10秒前
鱼yu关注了科研通微信公众号
11秒前
Pt-SACs发布了新的文献求助10
11秒前
所所应助静然采纳,获得10
11秒前
zhangy559完成签到 ,获得积分10
12秒前
12秒前
生动的水蜜桃关注了科研通微信公众号
13秒前
李小宁发布了新的文献求助10
13秒前
动听的人英完成签到 ,获得积分10
13秒前
14秒前
州州完成签到,获得积分10
14秒前
16秒前
乐观沛白发布了新的文献求助10
17秒前
17秒前
Pt-SACs完成签到,获得积分10
19秒前
20秒前
20秒前
机智斩发布了新的文献求助10
22秒前
qhy完成签到,获得积分10
23秒前
打打应助x1采纳,获得10
24秒前
24秒前
深情安青应助直率小蚂蚁采纳,获得10
26秒前
26秒前
鱼yu发布了新的文献求助30
26秒前
无花果应助乐观沛白采纳,获得10
27秒前
静然发布了新的文献求助10
28秒前
29秒前
调研昵称发布了新的文献求助10
29秒前
pp应助夕荀采纳,获得20
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112