Outcome Prediction Models for Endovascular Treatment of Ischemic Stroke: Systematic Review and External Validation

医学 改良兰金量表 冲程(发动机) 梅德林 随机对照试验 临床试验 接收机工作特性 物理疗法 急诊医学 内科学
作者
Femke Kremers,Esmee Venema,Martijne H C Duvekot,Lonneke S. F. Yo,Reinoud P H Bokkers,Geert J. Lycklama à Nijeholt,Adriaan C.G.M. van Es,Aad van der Lugt,Charles B. L. M. Majoie,James F. Burke,Bob Roozenbeek,Hester F. Lingsma,Diederik W.J. Dippel,Clean Registry Investigators
出处
期刊:Stroke [Lippincott Williams & Wilkins]
标识
DOI:10.1161/strokeaha.120.033445
摘要

Background and Purpose: Prediction models for outcome of patients with acute ischemic stroke who will undergo endovascular treatment have been developed to improve patient management. The aim of the current study is to provide an overview of preintervention models for functional outcome after endovascular treatment and to validate these models with data from daily clinical practice. Methods: We systematically searched within Medline, Embase, Cochrane, Web of Science, to include prediction models. Models identified from the search were validated in the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) registry, which includes all patients treated with endovascular treatment within 6.5 hours after stroke onset in the Netherlands between March 2014 and November 2017. Predictive performance was evaluated according to discrimination (area under the curve) and calibration (slope and intercept of the calibration curve). Good functional outcome was defined as a score of 0–2 or 0–3 on the modified Rankin Scale depending on the model. Results: After screening 3468 publications, 19 models were included in this validation. Variables included in the models mainly addressed clinical and imaging characteristics at baseline. In the validation cohort of 3156 patients, discriminative performance ranged from 0.61 (SPAN-100 [Stroke Prognostication Using Age and NIH Stroke Scale]) to 0.80 (MR PREDICTS). Best-calibrated models were THRIVE (The Totaled Health Risks in Vascular Events; intercept −0.06 [95% CI, −0.14 to 0.02]; slope 0.84 [95% CI, 0.75–0.95]), THRIVE-c (intercept 0.08 [95% CI, −0.02 to 0.17]; slope 0.71 [95% CI, 0.65–0.77]), Stroke Checkerboard score (intercept −0.05 [95% CI, −0.13 to 0.03]; slope 0.97 [95% CI, 0.88–1.08]), and MR PREDICTS (intercept 0.43 [95% CI, 0.33–0.52]; slope 0.93 [95% CI, 0.85–1.01]). Conclusions: The THRIVE-c score and MR PREDICTS both showed a good combination of discrimination and calibration and were, therefore, superior in predicting functional outcome for patients with ischemic stroke after endovascular treatment within 6.5 hours. Since models used different predictors and several models had relatively good predictive performance, the decision on which model to use in practice may also depend on simplicity of the model, data availability, and the comparability of the population and setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳岳岳发布了新的文献求助10
1秒前
研友_n0kjPL完成签到,获得积分0
2秒前
2秒前
2秒前
Dai关注了科研通微信公众号
2秒前
英勇的飞扬完成签到,获得积分10
3秒前
3秒前
无花果应助延胡索采纳,获得10
3秒前
上官若男应助WW采纳,获得10
3秒前
斯文败类应助露西亚采纳,获得10
3秒前
幽默天真发布了新的文献求助100
3秒前
3秒前
平安喜乐完成签到 ,获得积分10
4秒前
5秒前
小二郎应助蓝海采纳,获得10
5秒前
5秒前
Jasper应助youngcy采纳,获得10
6秒前
6秒前
员艳宁发布了新的文献求助30
8秒前
xu完成签到,获得积分20
8秒前
默默发布了新的文献求助10
9秒前
9秒前
踏雪完成签到 ,获得积分10
9秒前
hhhhhhhh完成签到,获得积分20
11秒前
11秒前
hdzhaung发布了新的文献求助10
12秒前
13秒前
苹果完成签到,获得积分10
13秒前
我要发nature完成签到,获得积分20
14秒前
14秒前
15秒前
yang完成签到 ,获得积分10
16秒前
John发布了新的文献求助10
17秒前
辛苦科研人完成签到 ,获得积分10
17秒前
19秒前
awwww发布了新的文献求助10
19秒前
苹果发布了新的文献求助10
19秒前
生椰拿铁发布了新的文献求助10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671