Outcome Prediction Models for Endovascular Treatment of Ischemic Stroke: Systematic Review and External Validation

医学 改良兰金量表 冲程(发动机) 梅德林 随机对照试验 临床试验 接收机工作特性 物理疗法 急诊医学 内科学
作者
Femke Kremers,Esmee Venema,Martijne H C Duvekot,Lonneke S. F. Yo,Reinoud P H Bokkers,Geert J. Lycklama à Nijeholt,Adriaan C.G.M. van Es,Aad van der Lugt,Charles B. L. M. Majoie,James F. Burke,Bob Roozenbeek,Hester F. Lingsma,Diederik W.J. Dippel,Clean Registry Investigators
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/strokeaha.120.033445
摘要

Background and Purpose: Prediction models for outcome of patients with acute ischemic stroke who will undergo endovascular treatment have been developed to improve patient management. The aim of the current study is to provide an overview of preintervention models for functional outcome after endovascular treatment and to validate these models with data from daily clinical practice. Methods: We systematically searched within Medline, Embase, Cochrane, Web of Science, to include prediction models. Models identified from the search were validated in the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) registry, which includes all patients treated with endovascular treatment within 6.5 hours after stroke onset in the Netherlands between March 2014 and November 2017. Predictive performance was evaluated according to discrimination (area under the curve) and calibration (slope and intercept of the calibration curve). Good functional outcome was defined as a score of 0–2 or 0–3 on the modified Rankin Scale depending on the model. Results: After screening 3468 publications, 19 models were included in this validation. Variables included in the models mainly addressed clinical and imaging characteristics at baseline. In the validation cohort of 3156 patients, discriminative performance ranged from 0.61 (SPAN-100 [Stroke Prognostication Using Age and NIH Stroke Scale]) to 0.80 (MR PREDICTS). Best-calibrated models were THRIVE (The Totaled Health Risks in Vascular Events; intercept −0.06 [95% CI, −0.14 to 0.02]; slope 0.84 [95% CI, 0.75–0.95]), THRIVE-c (intercept 0.08 [95% CI, −0.02 to 0.17]; slope 0.71 [95% CI, 0.65–0.77]), Stroke Checkerboard score (intercept −0.05 [95% CI, −0.13 to 0.03]; slope 0.97 [95% CI, 0.88–1.08]), and MR PREDICTS (intercept 0.43 [95% CI, 0.33–0.52]; slope 0.93 [95% CI, 0.85–1.01]). Conclusions: The THRIVE-c score and MR PREDICTS both showed a good combination of discrimination and calibration and were, therefore, superior in predicting functional outcome for patients with ischemic stroke after endovascular treatment within 6.5 hours. Since models used different predictors and several models had relatively good predictive performance, the decision on which model to use in practice may also depend on simplicity of the model, data availability, and the comparability of the population and setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
3秒前
脑洞疼应助hsa_ID采纳,获得10
5秒前
干净的南风应助CPPPPPP3采纳,获得10
5秒前
传统的砖家完成签到,获得积分20
7秒前
ppp发布了新的文献求助10
7秒前
桐桐应助漂亮乐蓉采纳,获得10
8秒前
9秒前
全宝林完成签到,获得积分10
9秒前
SICHEN发布了新的文献求助10
10秒前
iori完成签到,获得积分10
10秒前
英俊的铭应助聪慧的凝海采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
铃溪完成签到,获得积分10
10秒前
刘文赋完成签到,获得积分10
10秒前
12秒前
13秒前
Sau1发布了新的文献求助10
14秒前
扭扭车完成签到,获得积分10
14秒前
clone2012完成签到,获得积分10
14秒前
清秀的鲂完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
SciGPT应助美满的大象采纳,获得10
16秒前
17秒前
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660142
求助须知:如何正确求助?哪些是违规求助? 4831530
关于积分的说明 15089282
捐赠科研通 4818721
什么是DOI,文献DOI怎么找? 2578762
邀请新用户注册赠送积分活动 1533370
关于科研通互助平台的介绍 1492124