Outcome Prediction Models for Endovascular Treatment of Ischemic Stroke: Systematic Review and External Validation

医学 改良兰金量表 冲程(发动机) 梅德林 随机对照试验 临床试验 接收机工作特性 物理疗法 急诊医学 内科学
作者
Femke Kremers,Esmee Venema,Martijne H C Duvekot,Lonneke S. F. Yo,Reinoud P H Bokkers,Geert J. Lycklama à Nijeholt,Adriaan C.G.M. van Es,Aad van der Lugt,Charles B. L. M. Majoie,James F. Burke,Bob Roozenbeek,Hester F. Lingsma,Diederik W.J. Dippel,Clean Registry Investigators
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/strokeaha.120.033445
摘要

Background and Purpose: Prediction models for outcome of patients with acute ischemic stroke who will undergo endovascular treatment have been developed to improve patient management. The aim of the current study is to provide an overview of preintervention models for functional outcome after endovascular treatment and to validate these models with data from daily clinical practice. Methods: We systematically searched within Medline, Embase, Cochrane, Web of Science, to include prediction models. Models identified from the search were validated in the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) registry, which includes all patients treated with endovascular treatment within 6.5 hours after stroke onset in the Netherlands between March 2014 and November 2017. Predictive performance was evaluated according to discrimination (area under the curve) and calibration (slope and intercept of the calibration curve). Good functional outcome was defined as a score of 0–2 or 0–3 on the modified Rankin Scale depending on the model. Results: After screening 3468 publications, 19 models were included in this validation. Variables included in the models mainly addressed clinical and imaging characteristics at baseline. In the validation cohort of 3156 patients, discriminative performance ranged from 0.61 (SPAN-100 [Stroke Prognostication Using Age and NIH Stroke Scale]) to 0.80 (MR PREDICTS). Best-calibrated models were THRIVE (The Totaled Health Risks in Vascular Events; intercept −0.06 [95% CI, −0.14 to 0.02]; slope 0.84 [95% CI, 0.75–0.95]), THRIVE-c (intercept 0.08 [95% CI, −0.02 to 0.17]; slope 0.71 [95% CI, 0.65–0.77]), Stroke Checkerboard score (intercept −0.05 [95% CI, −0.13 to 0.03]; slope 0.97 [95% CI, 0.88–1.08]), and MR PREDICTS (intercept 0.43 [95% CI, 0.33–0.52]; slope 0.93 [95% CI, 0.85–1.01]). Conclusions: The THRIVE-c score and MR PREDICTS both showed a good combination of discrimination and calibration and were, therefore, superior in predicting functional outcome for patients with ischemic stroke after endovascular treatment within 6.5 hours. Since models used different predictors and several models had relatively good predictive performance, the decision on which model to use in practice may also depend on simplicity of the model, data availability, and the comparability of the population and setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助lyejxusgh采纳,获得10
2秒前
2秒前
2秒前
3秒前
闪闪明轩完成签到,获得积分20
3秒前
4秒前
cc完成签到,获得积分20
4秒前
,。完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
chy发布了新的文献求助10
6秒前
Isaac完成签到 ,获得积分10
6秒前
科研通AI6应助玉ER采纳,获得10
6秒前
7秒前
奶昔完成签到,获得积分10
7秒前
风笙完成签到,获得积分10
7秒前
8秒前
ysxl发布了新的文献求助10
8秒前
8秒前
白马非马完成签到 ,获得积分10
8秒前
天天快乐应助xiaotao采纳,获得30
9秒前
9秒前
深情安青应助chenluAccept采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助Lylin采纳,获得10
10秒前
Ssss发布了新的文献求助10
12秒前
幼汁汁鬼鬼完成签到,获得积分10
12秒前
lzz完成签到,获得积分10
12秒前
黑翎完成签到 ,获得积分10
12秒前
LUJL发布了新的文献求助10
12秒前
Zcy发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
冰火完成签到,获得积分10
16秒前
xiao完成签到,获得积分10
16秒前
徐徐徐徐完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027