A Study on Forest Flame Recognition of UAV Based on YOLO-V3 Improved Algorithm

计算机科学 人工智能 遥感 算法 模式识别(心理学) 环境科学
作者
Zhen Wang,Huidan Zhang,Muxin Hou,Xiaoting Shu,Jianguo Wu,Xiaoqian Zhang
出处
期刊:Communications in computer and information science 被引量:1
标识
DOI:10.1007/978-981-16-7210-1_47
摘要

In recent years, all regions of China have constantly paid attention to forest fire prevention, which however is still restricted to onsite observation carried out by forest ranger and basic satellite resource survey. The use of UAV system for forest fire monitoring is still in its infancy. To bridge the gap, this study trains the YOLO-V3 algorithm for forest fire detection based on UAV collected data. Traditional flame detection models are commonly based on RGB colors. They can suffer low accuracy and detection speed, and it is still difficult for the YOLO-V3-based model to detect small flames. In this paper, the YOLO-V3 model is improved to support multi-feature detection. Specifically, 208208 smaller resolution feature scales are added to allow the model learning shallow features of flame images. In this way, the learning ability of the proposed model for shallow image information is improved in the feature extraction stage, which can facilitate the dentification of small flame regions. In addition, the prior box is optimized to further improve detection precision. In the experiment, the mAP value can reach 67.6% with detection speed of 190FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助lelehanhan采纳,获得10
1秒前
yh完成签到,获得积分10
3秒前
3秒前
MutantKitten完成签到,获得积分10
4秒前
不负发布了新的文献求助20
7秒前
9秒前
rouhan发布了新的文献求助10
9秒前
LabRat完成签到 ,获得积分10
9秒前
ZHANG完成签到,获得积分10
10秒前
Hi完成签到,获得积分10
11秒前
冲冲冲完成签到,获得积分10
15秒前
15秒前
rouhan完成签到,获得积分10
17秒前
19秒前
左丘世立完成签到,获得积分10
23秒前
小平发布了新的文献求助10
23秒前
24秒前
pie完成签到,获得积分20
24秒前
花生完成签到,获得积分10
28秒前
不负完成签到,获得积分10
28秒前
liangyichong发布了新的文献求助30
29秒前
wpeng发布了新的文献求助10
30秒前
38秒前
不配.应助安禾采纳,获得10
39秒前
xiaofan1991完成签到,获得积分10
41秒前
柿饼发布了新的文献求助10
42秒前
50秒前
52秒前
竞燃查无此人完成签到,获得积分10
52秒前
53秒前
55秒前
嘻嘻哈哈完成签到,获得积分10
56秒前
57秒前
李健应助复杂飞飞采纳,获得10
57秒前
懒懒发布了新的文献求助10
59秒前
59秒前
66发布了新的文献求助10
1分钟前
英姑应助丢丢银采纳,获得30
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379815
求助须知:如何正确求助?哪些是违规求助? 2995247
关于积分的说明 8762345
捐赠科研通 2680141
什么是DOI,文献DOI怎么找? 1467827
科研通“疑难数据库(出版商)”最低求助积分说明 678787
邀请新用户注册赠送积分活动 670646