亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Property-Aware Relation Networks for Few-Shot Molecular Property Prediction

财产(哲学) 计算机科学 关系(数据库) 公制(单位) 图形 理论计算机科学 人工智能 编码器 水准点(测量) 机器学习 数据挖掘 地理 大地测量学 经济 哲学 操作系统 认识论 运营管理
作者
Quanming Yao,Zhenqian Shen,Yaqing Wang,Dejing Dou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (8): 5413-5429 被引量:14
标识
DOI:10.1109/tpami.2024.3368090
摘要

Molecular property prediction plays a fundamental role in AI-aided drug discovery to identify candidate molecules, which is also essentially a few-shot problem due to lack of labeled data. In this paper, we propose Property-Aware Relation networks (PAR) to handle this problem. We first introduce a property-aware molecular encoder to transform the generic molecular embeddings to property-aware ones. Then, we design a query-dependent relation graph learning module to estimate molecular relation graph and refine molecular embeddings w.r.t. the target property. Thus, the facts that both property-related information and relationships among molecules change across different properties are utilized to better learn and propagate molecular embeddings. Generally, PAR can be regarded as a combination of metric-based and optimization-based few-shot learning method. We further extend PAR to Transferable PAR (T-PAR) to handle the distribution shift, which is common in drug discovery. The keys are joint sampling and relation graph learning schemes, which simultaneously learn molecular embeddings from both source and target domains. Extensive results on benchmark datasets show that PAR and T-PAR consistently outperform existing methods on few-shot and transferable few-shot molecular property prediction tasks, respectively. Besides, ablation and case studies are conducted to validate the rationality of our designs in PAR and T-PAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
10秒前
君君发布了新的文献求助10
15秒前
19秒前
20秒前
24秒前
35秒前
LIFE2020完成签到 ,获得积分10
37秒前
深情安青应助包容山灵采纳,获得10
45秒前
47秒前
58秒前
1分钟前
wakawaka完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
TT完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
马s完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5687976
求助须知:如何正确求助?哪些是违规求助? 5062062
关于积分的说明 15193528
捐赠科研通 4846367
什么是DOI,文献DOI怎么找? 2598843
邀请新用户注册赠送积分活动 1550910
关于科研通互助平台的介绍 1509462