生物相容性
材料科学
自愈水凝胶
生物降解
淀粉
纳米技术
可穿戴计算机
生物医学工程
计算机科学
化学
高分子化学
嵌入式系统
生物化学
医学
有机化学
冶金
作者
Shu Wan,N. J. Wu,Yizhou Ye,Shunbo Li,Haizhou Huang,Li Chen,Hengchang Bi,Litao Sun
标识
DOI:10.1002/sstr.202100105
摘要
It is crucial to prepare wearable devices with high stretchability to reduce the mechanical mismatch when attached to the skin. Recently, pure polysaccharide‐based hydrogels have been intensively focused on due to the living matter‐like softness, abundance, inherent biocompatibility, complete biodegradability, and renewability. However, it remains a significant challenge to achieve pure polysaccharide‐based hydrogels with high stretchability. Herein, a facile strategy is presented to synthesize a highly stretchable hydrogel wearable patch by integrating the starch (from lotus rhizome) as skeleton and sodium chloride as the electrolyte, exhibiting several advantages such as low modulus (≈4.4 kPa), broad stretching range (0≈790%), high ionic conductivity (10 S m −1 ), high linearity (0.996, 0≈300%), and good reproducibility (>1000 cycles). Surprisingly, both stretchability and softness have surpassed those of other pure polysaccharide‐based hydrogels reported in the literature. Furthermore, the combination of the adhesion, the low modulus, and stretchability can realize conformal attachment to different kinds of uneven objects, including the skin. Based on these properties, an electrooculographic (EOG) signal acquisition system and a relevant prototype video game using starch hydrogel patches are designed, exhibiting great potential in EOG signals monitoring as well as human–machine interaction. Moreover, other functions such as biocompatibility and biodegradability are demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI