AvatarMe++: Facial Shape and BRDF Inference With Photorealistic Rendering-Aware GANs

渲染(计算机图形) 计算机科学 人工智能 双向反射分布函数 计算机视觉 镜面反射 面子(社会学概念) 计算机图形学(图像) 反射率 光学 社会科学 物理 社会学
作者
Alexandros Lattas,Stylianos Moschoglou,Stylianos Ploumpis,Baris Gecer,Abhijeet Ghosh,Stefanos Zafeiriou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 9269-9284 被引量:11
标识
DOI:10.1109/tpami.2021.3125598
摘要

Over the last years, many face analysis tasks have accomplished astounding performance, with applications including face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this work, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image. We capture a large dataset of facial shape and reflectance, which we have made public. We define a fast facial photorealistic differentiable rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation. With this, we train a network that disentangles the facial diffuse and specular BRDF components from a shape and texture with baked illumination, reconstructed with a state-of-the-art 3DMM fitting method. Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image, that can be rendered in various applications, and bridge the uncanny valley.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
oso完成签到,获得积分20
7秒前
7秒前
7秒前
星辰大海应助叁丘山采纳,获得10
8秒前
8秒前
Ava应助勤恳兔子采纳,获得10
10秒前
Lucas应助斯可采纳,获得10
10秒前
just发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
蔡扬鹏发布了新的文献求助10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
Singularity应助科研通管家采纳,获得20
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
13秒前
春雨霏霏发布了新的文献求助10
14秒前
杰尼龟发布了新的文献求助10
14秒前
我是老大应助迷路问夏采纳,获得10
14秒前
14秒前
15秒前
乐乐发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
17秒前
18秒前
乐乐完成签到,获得积分10
19秒前
Corey_huang发布了新的文献求助30
19秒前
lxk666完成签到,获得积分10
20秒前
21秒前
叁丘山发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154023
求助须知:如何正确求助?哪些是违规求助? 2804958
关于积分的说明 7862656
捐赠科研通 2463084
什么是DOI,文献DOI怎么找? 1311125
科研通“疑难数据库(出版商)”最低求助积分说明 629453
版权声明 601821