抗辐射性
克拉斯
生物
癌症研究
同源重组
下调和上调
细胞生物学
非同源性末端接合
同源染色体
突变
遗传学
细胞培养
基因
作者
Linlin Yang,Changxian Shen,Adriana Estrada‐Bernal,Ryan Robb,Moumita Chatterjee,Nikhil Sebastian,Amy Webb,Xiaokui Mo,Wei Chen,Sunil Krishnan,Terence M. Williams
摘要
Abstract KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest. Moreover, KRAS mutations result in increased DNA damage response and upregulation of 53BP1 with associated increased non-homologous end-joining (NHEJ) repair. Remarkably, KRAS mutations lead to activation of NRF2 antioxidant signaling to increase 53BP1 gene transcription. Furthermore, genetic silencing or pharmacological inhibition of KRAS, NRF2 or 53BP1 attenuates KRAS mutation-induced radioresistance, especially in G1 phase cells. These findings reveal an important role for a KRAS-induced NRF2-53BP1 axis in the DNA repair and survival of KRAS-mutant tumor cells after radiotherapy, and indicate that targeting NRF2, 53BP1 or NHEJ may represent novel strategies to selectively abrogate KRAS mutation-mediated radioresistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI