Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
刚刚
懒得动完成签到,获得积分10
刚刚
1秒前
欣喜翠丝完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
科研通AI6应助wxy采纳,获得150
2秒前
ltt完成签到,获得积分10
3秒前
Akim应助陶醉山灵采纳,获得10
3秒前
3秒前
CipherSage应助pgojpogk采纳,获得30
4秒前
4秒前
达乐发布了新的文献求助10
4秒前
欣喜翠丝发布了新的文献求助10
5秒前
追寻荔枝发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
丘比特应助LLL采纳,获得10
7秒前
摆烂fish发布了新的文献求助10
7秒前
科研通AI6应助快乐保温杯采纳,获得10
8秒前
Abner发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
ywj完成签到,获得积分10
9秒前
李李李发布了新的文献求助10
9秒前
小刘效果顺利毕业完成签到,获得积分20
9秒前
情怀应助小白采纳,获得10
9秒前
Ava应助梁云采纳,获得10
10秒前
10秒前
10秒前
科研发布了新的文献求助10
10秒前
酷波er应助追寻荔枝采纳,获得10
11秒前
11秒前
俏皮的天思完成签到,获得积分10
11秒前
Orange应助凄凉山谷的风采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593