Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
淡淡冷荷完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
stephen_wang发布了新的文献求助10
5秒前
zengqin发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
菜小瓜发布了新的文献求助10
7秒前
李浩然发布了新的文献求助10
9秒前
嘤嘤怪应助乐施一刀采纳,获得10
10秒前
leihai发布了新的文献求助10
10秒前
明珠求瑕完成签到,获得积分10
11秒前
大榴莲哇发布了新的文献求助10
11秒前
小黄完成签到,获得积分20
12秒前
12秒前
12秒前
简单飞珍完成签到,获得积分10
14秒前
絔梦完成签到,获得积分10
14秒前
欢迎来甘肃完成签到 ,获得积分10
15秒前
qiao完成签到,获得积分10
16秒前
16秒前
16秒前
YRY完成签到 ,获得积分10
17秒前
jiayou发布了新的文献求助10
17秒前
小蘑菇应助xx采纳,获得30
17秒前
Yuri完成签到 ,获得积分10
19秒前
英姑应助夏冰雹采纳,获得10
19秒前
xu给醉熏的霆的求助进行了留言
19秒前
wq1020完成签到,获得积分10
19秒前
20秒前
ESFJ发布了新的文献求助30
20秒前
21秒前
hihi发布了新的文献求助10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247443
求助须知:如何正确求助?哪些是违规求助? 2890794
关于积分的说明 8264627
捐赠科研通 2559134
什么是DOI,文献DOI怎么找? 1387790
科研通“疑难数据库(出版商)”最低求助积分说明 650653
邀请新用户注册赠送积分活动 627384