Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nierdory完成签到,获得积分10
刚刚
刚刚
四火完成签到,获得积分10
1秒前
wsw完成签到,获得积分20
1秒前
2秒前
爆米花应助zeer0707采纳,获得10
2秒前
小蘑菇应助lsx采纳,获得10
2秒前
THEO完成签到,获得积分10
2秒前
紫z紫完成签到 ,获得积分10
2秒前
tt完成签到,获得积分10
2秒前
3秒前
勤恳的语蓉完成签到,获得积分10
3秒前
jiawei完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
WTC完成签到 ,获得积分10
5秒前
张先生2365完成签到,获得积分10
6秒前
李振博发布了新的文献求助10
6秒前
marksman完成签到,获得积分10
6秒前
momo完成签到,获得积分10
6秒前
Lan完成签到,获得积分10
7秒前
7秒前
小湛完成签到 ,获得积分10
7秒前
李健应助takeitboy采纳,获得10
7秒前
yy完成签到,获得积分10
7秒前
微笑的尔蓝完成签到,获得积分10
7秒前
内向秀发发布了新的文献求助10
7秒前
8秒前
我是老大应助孤心匠采纳,获得10
8秒前
研友_VZG7GZ应助三番又六次采纳,获得10
8秒前
8秒前
吴程发布了新的文献求助10
8秒前
冷酷芷雪完成签到,获得积分10
8秒前
exy发布了新的文献求助10
9秒前
zhuqiming发布了新的文献求助10
9秒前
kinlin应助腼腆的伯云采纳,获得10
10秒前
Flanlove完成签到 ,获得积分10
10秒前
Xingyu_Jiang完成签到,获得积分10
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023050
求助须知:如何正确求助?哪些是违规求助? 3563182
关于积分的说明 11341463
捐赠科研通 3294761
什么是DOI,文献DOI怎么找? 1814755
邀请新用户注册赠送积分活动 889456
科研通“疑难数据库(出版商)”最低求助积分说明 812930