Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单完成签到,获得积分10
1秒前
帅气凝云发布了新的文献求助10
2秒前
tico完成签到,获得积分10
2秒前
Akim应助BINGBING1230采纳,获得30
2秒前
丽娘发布了新的文献求助10
3秒前
3秒前
111发布了新的文献求助10
3秒前
4秒前
4秒前
留胡子的之槐完成签到,获得积分10
4秒前
浮游应助K2L采纳,获得10
4秒前
5秒前
5秒前
sogoucoco完成签到,获得积分10
6秒前
我是老大应助帅气凝云采纳,获得10
7秒前
妖九笙发布了新的文献求助10
8秒前
鸣风发布了新的文献求助10
8秒前
所所应助哈哈哈哈采纳,获得10
8秒前
8秒前
赘婿应助鳄鱼采纳,获得10
9秒前
11秒前
11秒前
wanci应助吴荣方采纳,获得10
12秒前
党文英发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
SciGPT应助AppleDog采纳,获得10
15秒前
快乐柴柴发布了新的文献求助20
15秒前
量子星尘发布了新的文献求助10
16秒前
KID应助水分子很忙采纳,获得10
17秒前
17秒前
纯真雁菱发布了新的文献求助10
17秒前
17秒前
17秒前
赶紧毕业完成签到,获得积分10
18秒前
研友_8RyzBZ发布了新的文献求助10
18秒前
kangkang发布了新的文献求助10
18秒前
dcx完成签到,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981