Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倔驴发布了新的文献求助10
刚刚
阿鸿完成签到,获得积分10
1秒前
小玉发布了新的文献求助30
2秒前
丝丝发布了新的文献求助10
3秒前
震动的戒指完成签到,获得积分20
4秒前
娇气的含莲完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
早晨的星星完成签到,获得积分10
7秒前
Jasper应助YLX采纳,获得10
7秒前
WEITAIBAO发布了新的文献求助10
8秒前
JamesPei应助刘致远采纳,获得10
9秒前
小郝已读博完成签到 ,获得积分10
10秒前
10秒前
Gun发布了新的文献求助20
11秒前
666发布了新的文献求助10
11秒前
FashionBoy应助星辰坠于海采纳,获得10
12秒前
12秒前
西南楚留香完成签到,获得积分0
12秒前
细胞完成签到,获得积分20
12秒前
Owen应助丝丝采纳,获得10
13秒前
科研通AI6应助闪闪的莫茗采纳,获得10
13秒前
14秒前
15秒前
研友_VZG7GZ应助菜小鸡采纳,获得30
15秒前
15秒前
15秒前
15秒前
16秒前
17秒前
星辰大海应助Winnie采纳,获得10
17秒前
17秒前
Kimo发布了新的文献求助30
18秒前
yannnis发布了新的文献求助10
19秒前
等待秋尽发布了新的文献求助10
19秒前
DA发布了新的文献求助10
20秒前
21秒前
qqxx完成签到,获得积分10
21秒前
幸福大白发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547012
求助须知:如何正确求助?哪些是违规求助? 3978071
关于积分的说明 12318010
捐赠科研通 3646605
什么是DOI,文献DOI怎么找? 2008273
邀请新用户注册赠送积分活动 1043802
科研通“疑难数据库(出版商)”最低求助积分说明 932460