Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.

计算机科学 工件(错误) 人工智能 信号(编程语言) 成像体模 压缩传感 脉搏(音乐)
作者
Yamin Arefeen,Onur Beker,Jaejin Cho,Heng Yu,Elfar Adalsteinsson,Berkin Bilgic
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (2): 764-780
标识
DOI:10.1002/mrm.29036
摘要

Purpose To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated MRI data. Methods Scan-specific artifact reduction in k-space (SPARK) trains a convolutional-neural-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input technique's reconstructed ACS. First, SPARK is applied to generalized autocalibrating partially parallel acquisitions (GRAPPA) and demonstrates improved robustness over other scan-specific models, such as robust artificial-neural-networks for k-space interpolation (RAKI) and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded imaging. Results SPARK yields SSIM improvement and 1.5 - 2× root mean squared error (RMSE) reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves RMSE performance by ~2×, SSIM performance, and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-Cartesian, 2D and 3D wave-encoding imaging by reducing RMSE between 20% and 25% and providing qualitative improvements. Conclusion SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰星曦完成签到,获得积分10
2秒前
废废废完成签到,获得积分10
2秒前
刘鑫如发布了新的文献求助10
2秒前
3秒前
3秒前
Jasper应助机智蜗牛采纳,获得10
4秒前
Evan发布了新的文献求助10
4秒前
youxianlang完成签到,获得积分10
5秒前
6秒前
清璃完成签到 ,获得积分10
6秒前
么么哒荼蘼酱完成签到,获得积分10
6秒前
pupil发布了新的文献求助10
7秒前
打打应助song采纳,获得10
7秒前
在水一方应助刘鑫如采纳,获得10
8秒前
罗婉婷完成签到,获得积分10
8秒前
YZMING发布了新的文献求助10
9秒前
无花果应助mikasa采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
小青椒应助科研通管家采纳,获得50
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
arniu2008应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
xpqiu完成签到,获得积分10
12秒前
中国大陆应助科研通管家采纳,获得10
12秒前
加菲丰丰应助科研通管家采纳,获得20
12秒前
12秒前
1missk完成签到,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539424
关于积分的说明 14167973
捐赠科研通 4456912
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740