已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on low-carbon campus based on ecological footprint evaluation and machine learning: A case study in China

生态足迹 碳足迹 持续性 人均 人口 可持续发展 环境经济学 环境科学 环境资源管理 生态学 温室气体 社会学 经济 生物 人口学
作者
Niting Zheng,Sheng Li,Yunpeng Wang,Yuwen Huang,Pietro Bartocci,Francesco Fantozzid,Junling Huang,Lü Xing,Haiping Yang,Hanping Chen,Qing Yang,Jianlan Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:323: 129181-129181 被引量:19
标识
DOI:10.1016/j.jclepro.2021.129181
摘要

Universities, the important locations for scientific research and education, have the responsibility to lead ecological civilization and low carbon transition. Ecological footprint evaluation (EFE) is usually used to measure sustainability of campuses. Although it can provide guidance and reference for overall campus planning, it lacks effective significance for individual behavior, especially when the reduction of carbon emissions is the aim. On the other hand a possible solution can be represented by machine learning. It can identify the key factors that will influence individual's overall carbon emissions caused by students' daily behavior, it can be used to find effective ways to reduce individual carbon emissions. This paper applied EFE and machine learning to comprehensively evaluate campus sustainability and students' carbon emissions. Huazhong University of Science and Technology (HUST), a "University in the Forest", was used as a study case in China. Even if HUST is endowned with a forest coverage of 72%, here we showed that its Ecological Footprint Index was −12.52, indicating strong unsustainability. This is mainly due to the high energy and food consumption, caused by the large population living in the campus and the lacking of energy saving measures. The per capita ecological footprint was relatively high, compared with other universities in the world, which meant more efforts needed to be done on ecological sustainability. Low carbon emission is a key feature for a sustainable campus. Based on the questionnaire survey delivered to 486 students who live in the campus, their daily active data were collected in terms of students' personal clothing, food, housing, consumption and transportation. And their associated carbon emissions were calculated based on emission intensities of Chinese population. Based on 486 detailed datasets, machine learning was then used to identify the key daily behavior to influence students' total carbon emission. Results showed that making behavior changes in air conditioning, food and electric bicycle were the most effective ways to reduce carbon emissions. Finally, while effective suggestions were proposed based on qualitative and quantitative evaluations, it is concluded that it is imperative for universities in China to formulate effective low-carbon policies, to achieve sustainable development and to confront global climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助CHAIZH采纳,获得10
1秒前
letter完成签到 ,获得积分10
2秒前
GZX完成签到,获得积分10
9秒前
9秒前
WeiMooo完成签到,获得积分10
9秒前
传奇3应助shinn采纳,获得10
9秒前
10秒前
69关闭了69文献求助
11秒前
13秒前
虞美人完成签到,获得积分10
13秒前
阿Q发布了新的文献求助10
14秒前
CHAIZH发布了新的文献求助10
16秒前
Sssssss完成签到 ,获得积分10
20秒前
YUNG完成签到 ,获得积分10
20秒前
22秒前
zoey完成签到,获得积分10
23秒前
幸运完成签到 ,获得积分20
23秒前
柚C美式完成签到 ,获得积分10
23秒前
乐乐应助常常采纳,获得10
23秒前
顺心牛排完成签到 ,获得积分10
23秒前
24秒前
26秒前
小西贝发布了新的文献求助10
28秒前
28秒前
轻舟完成签到,获得积分10
28秒前
shinn发布了新的文献求助10
29秒前
30秒前
希望天下0贩的0应助xue采纳,获得10
31秒前
31秒前
cgsu完成签到,获得积分10
32秒前
cyclin9完成签到,获得积分10
33秒前
chanyi完成签到,获得积分10
33秒前
ZY完成签到 ,获得积分10
34秒前
re发布了新的文献求助10
35秒前
酷波er应助leclare采纳,获得10
35秒前
追寻的访文完成签到,获得积分10
36秒前
CodeCraft应助tang采纳,获得10
37秒前
37秒前
38秒前
小马甲应助阿Q采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166315
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794163
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804626