Research on low-carbon campus based on ecological footprint evaluation and machine learning: A case study in China

生态足迹 碳足迹 持续性 人均 人口 可持续发展 环境经济学 环境科学 环境资源管理 生态学 温室气体 社会学 经济 生物 人口学
作者
Niting Zheng,Sheng Li,Yunpeng Wang,Yuwen Huang,Pietro Bartocci,Francesco Fantozzid,Junling Huang,Lü Xing,Haiping Yang,Hanping Chen,Qing Yang,Jianlan Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:323: 129181-129181 被引量:19
标识
DOI:10.1016/j.jclepro.2021.129181
摘要

Universities, the important locations for scientific research and education, have the responsibility to lead ecological civilization and low carbon transition. Ecological footprint evaluation (EFE) is usually used to measure sustainability of campuses. Although it can provide guidance and reference for overall campus planning, it lacks effective significance for individual behavior, especially when the reduction of carbon emissions is the aim. On the other hand a possible solution can be represented by machine learning. It can identify the key factors that will influence individual's overall carbon emissions caused by students' daily behavior, it can be used to find effective ways to reduce individual carbon emissions. This paper applied EFE and machine learning to comprehensively evaluate campus sustainability and students' carbon emissions. Huazhong University of Science and Technology (HUST), a "University in the Forest", was used as a study case in China. Even if HUST is endowned with a forest coverage of 72%, here we showed that its Ecological Footprint Index was −12.52, indicating strong unsustainability. This is mainly due to the high energy and food consumption, caused by the large population living in the campus and the lacking of energy saving measures. The per capita ecological footprint was relatively high, compared with other universities in the world, which meant more efforts needed to be done on ecological sustainability. Low carbon emission is a key feature for a sustainable campus. Based on the questionnaire survey delivered to 486 students who live in the campus, their daily active data were collected in terms of students' personal clothing, food, housing, consumption and transportation. And their associated carbon emissions were calculated based on emission intensities of Chinese population. Based on 486 detailed datasets, machine learning was then used to identify the key daily behavior to influence students' total carbon emission. Results showed that making behavior changes in air conditioning, food and electric bicycle were the most effective ways to reduce carbon emissions. Finally, while effective suggestions were proposed based on qualitative and quantitative evaluations, it is concluded that it is imperative for universities in China to formulate effective low-carbon policies, to achieve sustainable development and to confront global climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loscipy完成签到,获得积分10
2秒前
Micahaeler完成签到 ,获得积分10
3秒前
白菜完成签到 ,获得积分10
4秒前
务实青筠完成签到 ,获得积分10
7秒前
nicolaslcq完成签到,获得积分10
8秒前
zhouyelly完成签到,获得积分10
13秒前
研友Bn完成签到 ,获得积分10
22秒前
lizh187完成签到 ,获得积分10
25秒前
杨冲完成签到 ,获得积分10
31秒前
ken131完成签到 ,获得积分10
36秒前
萧布完成签到,获得积分10
39秒前
小龙发布了新的文献求助10
41秒前
张尧摇摇摇完成签到 ,获得积分10
42秒前
微生完成签到 ,获得积分10
48秒前
53秒前
小龙完成签到,获得积分10
53秒前
53秒前
呜呼啦呼完成签到 ,获得积分10
56秒前
Wang发布了新的文献求助10
59秒前
楠瓜发布了新的文献求助10
1分钟前
Chloe完成签到 ,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
洒家完成签到 ,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
古月丰色完成签到 ,获得积分10
1分钟前
暮晓见完成签到 ,获得积分10
1分钟前
小马甲应助山楂采纳,获得10
1分钟前
洁净的静芙完成签到 ,获得积分10
1分钟前
玲家傻妞完成签到 ,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
djdh完成签到 ,获得积分10
1分钟前
psy完成签到,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
tsy完成签到 ,获得积分10
1分钟前
内向东蒽完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
nt1119完成签到 ,获得积分10
1分钟前
好好休息完成签到 ,获得积分10
1分钟前
巾凡完成签到 ,获得积分10
1分钟前
刚子完成签到 ,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565