A deep learning algorithm for detecting acute myocardial infarction

医学 心肌梗塞 接收机工作特性 急诊科 内科学 诊断准确性 心脏病学 心电图 肌钙蛋白 回顾性队列研究 机器学习 曲线下面积 急诊分诊台 队列 曲线下面积 急诊医学 算法 精神科 药代动力学 计算机科学
作者
Wencheng Liu,Chin‐Sheng Lin,Chien‐Sung Tsai,Tien‐Ping Tsao,Cheng-Chung Cheng,Jun‐Ting Liou,Wei‐Shiang Lin,Shu‐Meng Cheng,Yu-Sheng Lou,Chia-Cheng Lee,Chin Lin
出处
期刊:Eurointervention [Europa Digital and Publishing]
卷期号:17 (9): 765-773 被引量:45
标识
DOI:10.4244/eij-d-20-01155
摘要

Delayed diagnosis or misdiagnosis of acute myocardial infarction (AMI) is not unusual in daily practice. Since a 12-lead electrocardiogram (ECG) is crucial for the detection of AMI, a systematic algorithm to strengthen ECG interpretation may have important implications for improving diagnosis.We aimed to develop a deep learning model (DLM) as a diagnostic support tool based on a 12-lead electrocardiogram.This retrospective cohort study included 1,051/697 ECGs from 737/287 coronary angiogram (CAG)-validated STEMI/NSTEMI patients and 140,336 ECGs from 76,775 non-AMI patients at the emergency department. The DLM was trained and validated in 80% and 20% of these ECGs. A human-machine competition was conducted. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the performance of the DLM.The AUC of the DLM for STEMI detection was 0.976 in the human-machine competition, which was significantly better than that of the best physicians. Furthermore, the DLM independently demonstrated sufficient diagnostic capacity for STEMI detection (AUC=0.997; sensitivity, 98.4%; specificity, 96.9%). Regarding NSTEMI detection, the AUC of the combined DLM and conventional cardiac troponin I (cTnI) increased to 0.978, which was better than that of either the DLM (0.877) or cTnI (0.950).The DLM may serve as a timely, objective and precise diagnostic decision support tool to assist emergency medical system-based networks and frontline physicians in detecting AMI and subsequently initiating reperfusion therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的河马完成签到,获得积分10
刚刚
细腻的语芙完成签到,获得积分20
刚刚
刚刚
搜集达人应助aaaaaa采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
2秒前
2秒前
lulu发布了新的文献求助10
2秒前
3秒前
wrh发布了新的文献求助10
3秒前
wangqing发布了新的文献求助10
4秒前
还没想好昵称完成签到,获得积分10
5秒前
5秒前
11112完成签到,获得积分10
6秒前
香蕉觅云应助ssh采纳,获得10
7秒前
7秒前
andrele发布了新的文献求助10
8秒前
9秒前
9秒前
风味烤羊腿完成签到,获得积分0
10秒前
FashionBoy应助负责的沛柔采纳,获得10
10秒前
10秒前
11秒前
Jasper应助鲸落采纳,获得10
11秒前
11秒前
对照发布了新的文献求助20
12秒前
小酥饼发布了新的文献求助30
13秒前
13秒前
14秒前
16秒前
彭于晏应助完美芹采纳,获得10
17秒前
18秒前
18秒前
aaaaaa发布了新的文献求助10
18秒前
Orange应助lulu采纳,获得10
19秒前
19秒前
李爱国应助小超人吼吼采纳,获得30
20秒前
memedaaaah发布了新的文献求助10
20秒前
拥抱梦想发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476893
求助须知:如何正确求助?哪些是违规求助? 3068470
关于积分的说明 9107919
捐赠科研通 2759871
什么是DOI,文献DOI怎么找? 1514435
邀请新用户注册赠送积分活动 700240
科研通“疑难数据库(出版商)”最低求助积分说明 699412