亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms

医学 机器学习 人工智能 乳腺癌 超声波 乳房成像 神经组阅片室 乳腺超声检查 接收机工作特性 算法 计算机科学 乳腺摄影术 放射科 癌症 内科学 精神科 神经学
作者
Mengwei Ma,Renyi Liu,Chanjuan Wen,Weimin Xu,Zeyuan Xu,Sina Wang,Jiefang Wu,Derun Pan,Bowen Zheng,Genggeng Qin,Weiguo Chen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1652-1662 被引量:71
标识
DOI:10.1007/s00330-021-08271-4
摘要

To evaluate the performance of interpretable machine learning models in predicting breast cancer molecular subtypes.We retrospectively enrolled 600 patients with invasive breast carcinoma between 2012 and 2019. The patients were randomly divided into a training (n = 450) and a testing (n = 150) set. The five constructed models were trained based on clinical characteristics and imaging features (mammography and ultrasonography). The model classification performances were evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity. Shapley additive explanation (SHAP) technique was used to interpret the optimal model output. Then we choose the optimal model as the assisted model to evaluate the performance of another four radiologists in predicting the molecular subtype of breast cancer with or without model assistance, according to mammography and ultrasound images.The decision tree (DT) model performed the best in distinguishing triple-negative breast cancer (TNBC) from other breast cancer subtypes, yielding an AUC of 0.971; accuracy, 0.947; sensitivity, 0.905; and specificity, 0.941. The accuracy, sensitivity, and specificity of all radiologists in distinguishing TNBC from other molecular subtypes and Luminal breast cancer from other molecular subtypes have significantly improved with the assistance of DT model. In the diagnosis of TNBC versus other subtypes, the average sensitivity, average specificity, and average accuracy of less experienced and more experienced radiologists increased by 0.090, 0.125, 0.114, and 0.060, 0.090, 0.083, respectively. In the diagnosis of Luminal versus other subtypes, the average sensitivity, average specificity, and average accuracy of less experienced and more experienced radiologists increased by 0.084, 0.152, 0.159, and 0.020, 0.100, 0.048.This study established an interpretable machine learning model to differentiate between breast cancer molecular subtypes, providing additional values for radiologists.• Interpretable machine learning model (MLM) could help clinicians and radiologists differentiate between breast cancer molecular subtypes. • The Shapley additive explanations (SHAP) technique can select important features for predicting the molecular subtypes of breast cancer from a large number of imaging signs. • Machine learning model can assist radiologists to evaluate the molecular subtype of breast cancer to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
炙热念双完成签到 ,获得积分10
4秒前
小太阳发布了新的文献求助10
5秒前
mirage应助天玄采纳,获得10
6秒前
顽强的小刘应助天玄采纳,获得10
6秒前
6秒前
顺心的定帮完成签到 ,获得积分10
7秒前
饱满若灵完成签到,获得积分10
7秒前
jojo完成签到 ,获得积分10
7秒前
芒果布丁完成签到 ,获得积分10
8秒前
囿于昼夜发布了新的文献求助10
10秒前
囿于昼夜完成签到,获得积分10
17秒前
28秒前
wen发布了新的文献求助10
32秒前
wszzb完成签到,获得积分10
35秒前
Hcc完成签到 ,获得积分10
35秒前
合一海盗完成签到,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
所所应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
NexusExplorer应助科研通管家采纳,获得50
37秒前
研友_VZG7GZ应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
称心采枫完成签到 ,获得积分10
40秒前
wen完成签到,获得积分10
46秒前
酷炫的小紫完成签到 ,获得积分10
46秒前
whyzz完成签到 ,获得积分10
47秒前
清风完成签到 ,获得积分10
48秒前
hmf1995完成签到 ,获得积分10
51秒前
51秒前
王子娇完成签到 ,获得积分10
53秒前
科研通AI5应助不能随便采纳,获得10
1分钟前
LMDD发布了新的文献求助10
1分钟前
XJT007完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
彪壮的青亦完成签到,获得积分10
1分钟前
AE完成签到 ,获得积分20
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674245
求助须知:如何正确求助?哪些是违规求助? 3229667
关于积分的说明 9786628
捐赠科研通 2940217
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372