Automatic recognition method of cow ruminating behaviour based on edge computing

沉思 上传 沉思 GSM演进的增强数据速率 计算机科学 数学 人工智能 心理学 操作系统 神经科学 认知
作者
Weizheng Shen,Yalin Sun,Yunlong Zhang,Xiongjun Fu,Handan Hou,Shengli Kou,Yonggen Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106495-106495 被引量:7
标识
DOI:10.1016/j.compag.2021.106495
摘要

Timely monitoring of the ruminating behaviour of dairy cows is beneficial for obtaining relevant information on dairy cow health to predict dairy cow diseases for the first time. To date, various strategies for monitoring ruminating behaviour have been proposed, but the real-time monitoring of these strategies has not been fully realized. Based on edge computing, we proposed a real-time method to monitor the ruminating behaviour of dairy cows. In this work, a self-designed edge device was used to collect and process the three-axis acceleration signals of dairy cows in real-time, and then a rumination recognition algorithm was used to calculate the overall sliding geometric mean of the Euclidean distance between the feature sets in real-time, determine the adaptive threshold, and verify the ruminating behaviour by the sliding window. Finally, real-time recognition of the ruminating behaviour of dairy cows was completed on the edge device side, without requiring substantial calculation time and resources. The edge device uploaded cow ruminating information to the cloud in real-time every two hours, and the cloud further aggregated the ruminating information. Compared with the traditional method of uploading three-axis acceleration data, this cloud-end integrated system based on edge computing reduced the amount of uploaded data bytes by 99.9%. Our ruminating recognition has achieved the following performance values: precision (93.7%), recall (92.8%), F1-score (93.3%), specificity (97.4%) and accuracy (96.1%), indicating a good classification effect. This research provides a real-time and effective method for monitoring of cow ruminating behaviour, and the proposed system can be used in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lbx发布了新的文献求助30
1秒前
充电宝应助王洋采纳,获得10
5秒前
6秒前
Lebranium发布了新的文献求助10
7秒前
li完成签到,获得积分10
8秒前
1122完成签到 ,获得积分10
9秒前
研友_CCQ_M完成签到,获得积分10
9秒前
晚上好发布了新的文献求助10
10秒前
搞怪哑铃发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
小蘑菇应助云朵上的鱼采纳,获得10
14秒前
Lebranium完成签到,获得积分10
15秒前
15秒前
瘦瘦的小蘑菇完成签到,获得积分10
16秒前
16秒前
Sissi完成签到 ,获得积分10
19秒前
所所应助nyc采纳,获得10
20秒前
echo完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
echo发布了新的文献求助20
26秒前
扶光完成签到,获得积分10
28秒前
30秒前
科研通AI2S应助一叶知秋采纳,获得10
31秒前
圆潘发布了新的文献求助20
32秒前
cjy发布了新的文献求助10
36秒前
深情安青应助daiyu采纳,获得10
37秒前
38秒前
oceanao举报尼姑拉斯娃求助涉嫌违规
39秒前
勤劳的芫完成签到,获得积分10
39秒前
小马甲应助化学兔八哥采纳,获得10
39秒前
云朵上的鱼完成签到,获得积分10
40秒前
123关闭了123文献求助
43秒前
Liza完成签到,获得积分10
43秒前
43秒前
合适的不言应助wdd采纳,获得10
45秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228