Automatic recognition method of cow ruminating behaviour based on edge computing

沉思 上传 沉思 GSM演进的增强数据速率 计算机科学 数学 人工智能 心理学 操作系统 神经科学 认知
作者
Weizheng Shen,Yalin Sun,Yunlong Zhang,Xiongjun Fu,Handan Hou,Shengli Kou,Yonggen Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106495-106495 被引量:7
标识
DOI:10.1016/j.compag.2021.106495
摘要

Timely monitoring of the ruminating behaviour of dairy cows is beneficial for obtaining relevant information on dairy cow health to predict dairy cow diseases for the first time. To date, various strategies for monitoring ruminating behaviour have been proposed, but the real-time monitoring of these strategies has not been fully realized. Based on edge computing, we proposed a real-time method to monitor the ruminating behaviour of dairy cows. In this work, a self-designed edge device was used to collect and process the three-axis acceleration signals of dairy cows in real-time, and then a rumination recognition algorithm was used to calculate the overall sliding geometric mean of the Euclidean distance between the feature sets in real-time, determine the adaptive threshold, and verify the ruminating behaviour by the sliding window. Finally, real-time recognition of the ruminating behaviour of dairy cows was completed on the edge device side, without requiring substantial calculation time and resources. The edge device uploaded cow ruminating information to the cloud in real-time every two hours, and the cloud further aggregated the ruminating information. Compared with the traditional method of uploading three-axis acceleration data, this cloud-end integrated system based on edge computing reduced the amount of uploaded data bytes by 99.9%. Our ruminating recognition has achieved the following performance values: precision (93.7%), recall (92.8%), F1-score (93.3%), specificity (97.4%) and accuracy (96.1%), indicating a good classification effect. This research provides a real-time and effective method for monitoring of cow ruminating behaviour, and the proposed system can be used in practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
超帅大楚发布了新的文献求助30
刚刚
1秒前
1秒前
1秒前
1秒前
hzwhz完成签到,获得积分20
2秒前
2秒前
爆米花应助ZhongxiangDing采纳,获得10
2秒前
3秒前
4秒前
陈冲发布了新的文献求助30
4秒前
kulei完成签到,获得积分10
4秒前
丘比特应助娇气的友易采纳,获得10
4秒前
蔚蓝发布了新的文献求助10
4秒前
5秒前
冯宇发布了新的文献求助10
6秒前
idea完成签到 ,获得积分10
6秒前
win完成签到 ,获得积分10
7秒前
7秒前
yznfly举报zq求助涉嫌违规
7秒前
务实日记本完成签到,获得积分10
7秒前
kwb发布了新的文献求助10
7秒前
xhz发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
自信的发布了新的文献求助10
9秒前
葫芦娃发布了新的文献求助10
9秒前
学啊学123完成签到 ,获得积分10
10秒前
Enyu完成签到 ,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Akim应助Zyc采纳,获得10
11秒前
Three_one完成签到,获得积分10
11秒前
12秒前
复杂惜霜发布了新的文献求助10
12秒前
JMrider完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641767
求助须知:如何正确求助?哪些是违规求助? 4757126
关于积分的说明 15014351
捐赠科研通 4800144
什么是DOI,文献DOI怎么找? 2565843
邀请新用户注册赠送积分活动 1524049
关于科研通互助平台的介绍 1483688