亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 艺术 数学分析 视觉艺术 材料科学 数学 复合材料 操作系统
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
量子星尘发布了新的文献求助10
12秒前
CHAUSU完成签到,获得积分10
22秒前
旧月完成签到 ,获得积分10
31秒前
旧月关注了科研通微信公众号
37秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
LIJinlin完成签到,获得积分10
1分钟前
雪白傲薇完成签到 ,获得积分10
1分钟前
LIJinlin发布了新的文献求助10
1分钟前
扯扯完成签到,获得积分20
1分钟前
1分钟前
讨厌水煮蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
老不靠谱发布了新的文献求助10
2分钟前
刘大宝发布了新的文献求助10
2分钟前
缪忆寒完成签到,获得积分10
2分钟前
充电宝应助刘大宝采纳,获得10
2分钟前
lovelife完成签到,获得积分10
2分钟前
sera完成签到 ,获得积分10
2分钟前
刘大宝完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432