A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 艺术 数学分析 视觉艺术 材料科学 数学 复合材料 操作系统
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助灵魂采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
brwen发布了新的文献求助10
2秒前
南音完成签到 ,获得积分10
2秒前
3秒前
十月发布了新的文献求助10
3秒前
领导范儿应助韩hqf采纳,获得10
3秒前
4秒前
4秒前
迷路的蛋挞完成签到,获得积分20
4秒前
4秒前
鳗鱼飞松完成签到,获得积分20
5秒前
Owen应助Archer采纳,获得10
5秒前
无风海发布了新的文献求助10
5秒前
DajeVn完成签到,获得积分10
5秒前
赤丶赤发布了新的文献求助10
6秒前
6秒前
赘婿应助xly采纳,获得10
6秒前
可爱的函函应助刘龙强采纳,获得10
6秒前
Frost完成签到,获得积分10
7秒前
MTF完成签到,获得积分20
7秒前
www发布了新的文献求助10
8秒前
8秒前
桃子完成签到,获得积分10
9秒前
清河海风发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
贺呵呵完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
一念往生完成签到,获得积分10
11秒前
12秒前
Lucas应助zyqsn采纳,获得10
12秒前
打打应助无风海采纳,获得10
12秒前
万能图书馆应助zhang采纳,获得30
13秒前
打打应助小彬采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002