A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 艺术 数学分析 视觉艺术 材料科学 数学 复合材料 操作系统
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助岁月轮回采纳,获得10
刚刚
tq发布了新的文献求助10
1秒前
1秒前
热爱科研的小康完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助沙拉酱采纳,获得10
3秒前
4秒前
Aprial完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
汉堡包应助xiaomage采纳,获得10
9秒前
小伊001完成签到,获得积分10
10秒前
王图图发布了新的文献求助10
11秒前
11秒前
罗伊黄完成签到 ,获得积分10
11秒前
12秒前
小马甲应助傅老师采纳,获得10
13秒前
韩嘉琦完成签到,获得积分10
14秒前
岁月轮回发布了新的文献求助10
14秒前
义气丹雪应助热情蓝天采纳,获得50
15秒前
沙拉酱完成签到,获得积分10
15秒前
dyyisash完成签到 ,获得积分10
15秒前
lee完成签到,获得积分10
16秒前
韩嘉琦发布了新的文献求助10
16秒前
云飞扬完成签到,获得积分10
16秒前
17秒前
18秒前
简单沛山完成签到,获得积分10
18秒前
沙拉酱发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
方森岩完成签到,获得积分10
21秒前
21秒前
xiaomage发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712008
求助须知:如何正确求助?哪些是违规求助? 5207072
关于积分的说明 15265901
捐赠科研通 4864051
什么是DOI,文献DOI怎么找? 2611188
邀请新用户注册赠送积分活动 1561440
关于科研通互助平台的介绍 1518761