A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 艺术 数学分析 视觉艺术 材料科学 数学 复合材料 操作系统
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助热心丹南采纳,获得10
1秒前
前景完成签到 ,获得积分10
2秒前
dd完成签到,获得积分10
3秒前
sunny完成签到,获得积分10
3秒前
yanghuanyu完成签到 ,获得积分10
4秒前
4秒前
King发布了新的文献求助10
5秒前
bodhi完成签到,获得积分10
5秒前
柔弱雅彤发布了新的文献求助10
7秒前
小张吃不胖完成签到 ,获得积分10
8秒前
不安的翠容完成签到,获得积分10
10秒前
阔达凝天完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
风趣遥完成签到,获得积分10
11秒前
77发布了新的文献求助10
11秒前
华仔应助柔弱雅彤采纳,获得10
12秒前
烟花应助柔弱雅彤采纳,获得10
12秒前
DMTloveforever完成签到,获得积分10
12秒前
陶醉的冷梅完成签到,获得积分10
14秒前
22222发布了新的文献求助20
14秒前
btyjs完成签到,获得积分10
14秒前
哈哈发布了新的文献求助10
15秒前
科研通AI6应助草学研究采纳,获得10
16秒前
Ran发布了新的文献求助10
17秒前
鲁万仇发布了新的文献求助10
17秒前
WYW发布了新的文献求助10
19秒前
20秒前
JamesPei应助苗条的一兰采纳,获得20
21秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
22秒前
Tokgo完成签到,获得积分10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
Jasper应助singlelx89采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640