A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 数学分析 艺术 视觉艺术 操作系统 复合材料 材料科学 数学
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
申木发布了新的文献求助50
3秒前
4秒前
4秒前
乐乐应助YY采纳,获得10
6秒前
6秒前
司徒灵松发布了新的文献求助10
8秒前
8秒前
上官若男应助申木采纳,获得30
9秒前
10秒前
zzzzz发布了新的文献求助10
10秒前
10秒前
行走完成签到,获得积分10
10秒前
ZHX完成签到,获得积分10
11秒前
朴实老虎发布了新的文献求助10
11秒前
隐形曼青应助pp采纳,获得10
12秒前
机灵亦凝发布了新的文献求助10
12秒前
13秒前
丘比特应助糊涂的丹南采纳,获得10
14秒前
14秒前
北境吠物发布了新的文献求助10
15秒前
lunaaaa发布了新的文献求助20
15秒前
高兴的小完成签到,获得积分10
16秒前
llll发布了新的文献求助10
17秒前
江川完成签到,获得积分10
18秒前
Lucas应助安安安采纳,获得10
21秒前
23秒前
23秒前
顷梦发布了新的文献求助10
23秒前
鹏程万里完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
30秒前
研友_Z34DG8发布了新的文献求助10
30秒前
王欣发布了新的文献求助10
30秒前
30秒前
Kizi2021完成签到,获得积分0
30秒前
Jonathan发布了新的文献求助10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264787
求助须知:如何正确求助?哪些是违规求助? 2904721
关于积分的说明 8331423
捐赠科研通 2575088
什么是DOI,文献DOI怎么找? 1399642
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296