A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison

计算机科学 个性化 一般化 机器学习 骨料(复合) 人工智能 云计算 联合学习 人工神经网络 算法 建筑 边缘设备 分布式计算 普适计算 理论计算机科学 人机交互 万维网 艺术 数学分析 视觉艺术 材料科学 数学 复合材料 操作系统
作者
Sannara Ek,François Portet,Philippe Lalanda,Germán Vega
标识
DOI:10.1109/percom50583.2021.9439129
摘要

Pervasive computing promotes the installation of connected devices in our living spaces in order to provide services. Two major developments have gained significant momentum recently: an advanced use of edge resources and the integration of machine learning techniques for engineering applications. This evolution raises major challenges, in particular related to the appropriate distribution of computing elements along an edge-to-cloud continuum. About this, Federated Learning has been recently proposed for distributed model training in the edge. The principle of this approach is to aggregate models learned on distributed clients in order to obtain a new, more general model. The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. However, it has been shown that this method is not adapted in heterogeneous environments where data is not identically and independently distributed (non-iid). This corresponds directly to some pervasive computing scenarios where heterogeneity of devices and users challenges machine learning with the double objective of generalization and personalization. In this paper, we propose a novel aggregation algorithm, termed FedDist, which is able to modify its model architecture (here, deep neural network) by identifying dissimilarities between specific neurons amongst the clients. This permits to account for clients' specificity without impairing generalization. Furthermore, we define a complete method to evaluate federated learning in a realistic way taking generalization and personalization into account. Using this method, FedDist is extensively tested and compared with three state-of-the-art federated learning algorithms on the pervasive domain of Human Activity Recognition with smartphones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助暖吱采纳,获得20
2秒前
受伤的平安完成签到,获得积分10
3秒前
ZeKaWa应助linlin采纳,获得10
5秒前
13秒前
17秒前
tianya完成签到,获得积分10
18秒前
19秒前
烟花应助标致的妙晴采纳,获得10
20秒前
浮游应助朴素的松采纳,获得10
22秒前
22秒前
23秒前
加百莉发布了新的文献求助10
24秒前
cancan发布了新的文献求助10
25秒前
伯言发布了新的文献求助10
30秒前
元谷雪应助陈帅采纳,获得10
31秒前
初雪完成签到,获得积分10
32秒前
花花花花完成签到 ,获得积分10
37秒前
39秒前
40秒前
肉肉完成签到 ,获得积分10
40秒前
cancan完成签到,获得积分10
41秒前
zhuangbaobao发布了新的文献求助10
44秒前
郭6666发布了新的文献求助10
45秒前
完美世界应助留胡子的火采纳,获得10
50秒前
脑洞疼应助郭6666采纳,获得10
50秒前
公冶愚志完成签到,获得积分10
53秒前
威武的皮卡丘完成签到,获得积分10
59秒前
59秒前
59秒前
大龙哥886应助ri_290采纳,获得10
1分钟前
sevenhill应助Devastating采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
拼搏应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555