A deep learning‐ and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer

人工智能 预处理器 接收机工作特性 肺癌 计算机科学 深度学习 试验装置 放射治疗计划 生存分析 医学影像学 模式识别(心理学) 医学 机器学习 放射科 肿瘤科 内科学 放射治疗
作者
Chen Wen,Xuewen Hou,Ying Hu,Gang Huang,Xiaodan Ye,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7946-7958 被引量:10
标识
DOI:10.1002/mp.15302
摘要

To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed.Data were collected from 484 patients from four research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut-off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed.The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%.The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助a1313采纳,获得10
刚刚
西因应助好吃的香菱采纳,获得10
刚刚
刚刚
Hello应助Roderick采纳,获得10
3秒前
4秒前
笑点低蜜蜂完成签到,获得积分10
4秒前
zm发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
思源应助竹蜻蜓采纳,获得10
5秒前
7秒前
7秒前
8秒前
青争发布了新的文献求助10
8秒前
洛城l发布了新的文献求助10
11秒前
11秒前
13秒前
zinc完成签到 ,获得积分10
13秒前
a1313发布了新的文献求助10
14秒前
LY发布了新的文献求助10
15秒前
隐形曼青应助wuxunxun2015采纳,获得10
16秒前
16秒前
16秒前
qqq完成签到,获得积分10
18秒前
小蘑菇应助小不点采纳,获得30
18秒前
18秒前
竹蜻蜓发布了新的文献求助10
20秒前
20秒前
able1325完成签到 ,获得积分10
20秒前
20秒前
顾矜应助LY采纳,获得10
21秒前
JamesPei应助Li采纳,获得10
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
dc发布了新的文献求助10
23秒前
dfggg发布了新的文献求助30
23秒前
泡泡泡芙发布了新的文献求助30
25秒前
小张发布了新的文献求助10
28秒前
小贾发布了新的文献求助10
28秒前
Lucas应助威武的皮卡丘采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655