A deep learning‐ and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer

人工智能 预处理器 接收机工作特性 肺癌 计算机科学 深度学习 试验装置 放射治疗计划 生存分析 医学影像学 模式识别(心理学) 医学 机器学习 放射科 肿瘤科 内科学 放射治疗
作者
Chen Wen,Xuewen Hou,Ying Hu,Gang Huang,Xiaodan Ye,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7946-7958 被引量:10
标识
DOI:10.1002/mp.15302
摘要

To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed.Data were collected from 484 patients from four research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut-off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed.The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%.The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
午后狂睡完成签到 ,获得积分10
1秒前
王灿灿应助Zhiyang Lu采纳,获得50
4秒前
大个应助刻苦的猕猴桃采纳,获得10
4秒前
huhu完成签到 ,获得积分10
5秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Fred Guan应助精灵少女采纳,获得10
11秒前
eternal_dreams完成签到 ,获得积分10
11秒前
小哈完成签到 ,获得积分10
14秒前
likw23完成签到 ,获得积分10
16秒前
18秒前
义气凡阳发布了新的文献求助10
24秒前
精灵少女完成签到,获得积分10
24秒前
畅快城完成签到,获得积分10
25秒前
Jessie完成签到 ,获得积分10
29秒前
安详向薇完成签到,获得积分10
30秒前
粗心的惜梦完成签到 ,获得积分10
32秒前
yk完成签到 ,获得积分10
34秒前
123完成签到 ,获得积分10
34秒前
兔子不爱吃胡萝卜完成签到,获得积分10
36秒前
dl完成签到,获得积分10
40秒前
忧郁的寻冬完成签到,获得积分10
40秒前
妖哥完成签到,获得积分10
50秒前
叮叮当当完成签到,获得积分10
51秒前
dl发布了新的文献求助10
55秒前
义气凡阳完成签到,获得积分10
55秒前
Likz完成签到,获得积分10
56秒前
xxxx完成签到 ,获得积分10
59秒前
世上僅有的榮光之路完成签到,获得积分10
1分钟前
星丶完成签到 ,获得积分10
1分钟前
瑞曦完成签到 ,获得积分10
1分钟前
1分钟前
现实的曼安完成签到 ,获得积分10
1分钟前
Gorge完成签到 ,获得积分10
1分钟前
有人应助小雷采纳,获得10
1分钟前
Denmark完成签到 ,获得积分10
1分钟前
Ben完成签到,获得积分10
1分钟前
体贴的靖仇完成签到 ,获得积分20
1分钟前
云阿柔完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176