A deep learning‐ and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer

人工智能 预处理器 接收机工作特性 肺癌 计算机科学 深度学习 试验装置 放射治疗计划 生存分析 医学影像学 模式识别(心理学) 医学 机器学习 放射科 肿瘤科 内科学 放射治疗
作者
Chen Wen,Xuewen Hou,Ying Hu,Gang Huang,Xiaodan Ye,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7946-7958 被引量:10
标识
DOI:10.1002/mp.15302
摘要

To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed.Data were collected from 484 patients from four research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut-off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed.The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%.The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮浮世世发布了新的文献求助10
刚刚
肉被卡完成签到,获得积分10
1秒前
1秒前
Paranoid发布了新的文献求助10
1秒前
Jasper应助平淡糖豆采纳,获得10
1秒前
凉瞳发布了新的文献求助10
2秒前
xxx完成签到,获得积分10
2秒前
厉害完成签到,获得积分10
2秒前
沉静秋尽发布了新的文献求助10
2秒前
3秒前
洪汉完成签到,获得积分10
3秒前
123123完成签到,获得积分10
3秒前
兴奋若冰完成签到,获得积分10
3秒前
asdffgg814发布了新的文献求助10
3秒前
月亮完成签到 ,获得积分10
3秒前
在水一方应助Nano采纳,获得10
3秒前
wdd发布了新的文献求助10
4秒前
肖林发布了新的文献求助10
4秒前
WSS完成签到,获得积分10
4秒前
4秒前
科研通AI6应助栀子采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
英俊的铭应助fen采纳,获得10
6秒前
7秒前
Yuan88发布了新的文献求助10
7秒前
orixero应助奶油采纳,获得10
7秒前
风中冰香应助thynkz采纳,获得40
8秒前
WSS发布了新的文献求助10
8秒前
琉璃发布了新的文献求助30
8秒前
聪明的珊迪完成签到,获得积分10
9秒前
9秒前
asdffgg814完成签到,获得积分10
10秒前
zero发布了新的文献求助10
11秒前
12秒前
科研通AI6应助LQ采纳,获得10
12秒前
浪费发布了新的文献求助10
12秒前
何大青完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609