A deep learning‐ and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer

人工智能 预处理器 接收机工作特性 肺癌 计算机科学 深度学习 试验装置 放射治疗计划 生存分析 医学影像学 模式识别(心理学) 医学 机器学习 放射科 肿瘤科 内科学 放射治疗
作者
Chen Wen,Xuewen Hou,Ying Hu,Gang Huang,Xiaodan Ye,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7946-7958 被引量:10
标识
DOI:10.1002/mp.15302
摘要

To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed.Data were collected from 484 patients from four research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut-off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed.The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%.The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxzw完成签到 ,获得积分10
刚刚
子鹤完成签到,获得积分10
刚刚
gab发布了新的文献求助10
刚刚
科目三应助oyx53采纳,获得10
刚刚
1秒前
云墨完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
2秒前
orixero应助feishi采纳,获得10
3秒前
3秒前
3秒前
4秒前
hbpu230701发布了新的文献求助10
4秒前
化学镁铝完成签到,获得积分10
5秒前
6秒前
voifhpg完成签到 ,获得积分10
6秒前
6秒前
遥望星空应助科研通管家采纳,获得10
6秒前
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
慕青应助自由自在采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
iNk应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
7秒前
lcc应助科研通管家采纳,获得10
7秒前
Orange应助团子采纳,获得10
7秒前
naikuizi发布了新的文献求助10
7秒前
今后应助科研通管家采纳,获得10
7秒前
Arthur完成签到,获得积分10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
典雅的皓轩完成签到 ,获得积分10
7秒前
7秒前
lcc应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670