A deep learning‐ and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer

人工智能 预处理器 接收机工作特性 肺癌 计算机科学 深度学习 试验装置 放射治疗计划 生存分析 医学影像学 模式识别(心理学) 医学 机器学习 放射科 肿瘤科 内科学 放射治疗
作者
Chen Wen,Xuewen Hou,Ying Hu,Gang Huang,Xiaodan Ye,Shengdong Nie
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7946-7958 被引量:10
标识
DOI:10.1002/mp.15302
摘要

To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed.Data were collected from 484 patients from four research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut-off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed.The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%.The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bo完成签到 ,获得积分10
刚刚
迟大猫应助啵乐乐采纳,获得10
1秒前
安雯完成签到 ,获得积分10
1秒前
HuLL完成签到,获得积分10
1秒前
Yolo完成签到 ,获得积分10
1秒前
难过的慕青完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
4秒前
无花果应助sunzhiyu233采纳,获得10
4秒前
韭黄完成签到,获得积分20
4秒前
5秒前
诚c发布了新的文献求助10
5秒前
自然秋柳完成签到 ,获得积分10
5秒前
我是老大应助经法采纳,获得10
5秒前
默默的皮牙子应助经法采纳,获得10
5秒前
orixero应助经法采纳,获得10
5秒前
小马甲应助经法采纳,获得10
5秒前
柚子成精应助经法采纳,获得10
6秒前
小蘑菇应助经法采纳,获得10
6秒前
深情安青应助经法采纳,获得10
6秒前
李爱国应助经法采纳,获得10
6秒前
共享精神应助经法采纳,获得10
6秒前
yyyyyy完成签到 ,获得积分10
6秒前
LL完成签到,获得积分10
6秒前
ziyiziyi发布了新的文献求助10
7秒前
哈哈哈haha发布了新的文献求助40
7秒前
7秒前
啵乐乐完成签到,获得积分10
8秒前
哈哈完成签到,获得积分20
8秒前
9秒前
logic完成签到,获得积分10
9秒前
岁月轮回发布了新的文献求助10
9秒前
小离发布了新的文献求助10
9秒前
CodeCraft应助艺玲采纳,获得10
9秒前
chenjyuu完成签到,获得积分10
10秒前
韭黄发布了新的文献求助10
10秒前
10秒前
子车雁开完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759