Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach

人工智能 计算机视觉 计算机科学 质心 RGB颜色模型 职位(财务) 抓住 像素 交叉口(航空) 数学 工程类 财务 航空航天工程 经济 程序设计语言
作者
Liang Gong,Wenjie Wang,Tao Wang,Chengliang Liu
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (1): 69-84 被引量:17
标识
DOI:10.1002/rob.22041
摘要

Abstract Occlusion is one of the key factors affecting the success rate of vision‐based fruit‐picking robots. It is important to accurately locate and grasp the occluded fruit in field applications, However, there is yet no universal and effective solution. In this paper, a high‐precision estimation method of spatial geometric features of occluded targets based on deep learning and multisource images is presented, enabling the selective harvest robot to envision the whole target fruit as if its occlusions do not exist. First, RGB, depth and infrared images are acquired. And pixel‐level matched RGB‐D‐I fusion images are obtained by image registration. Second, aiming at the problem of detecting the occluded tomatoes in the greenhouse, an extended Mask‐RCNN network is designed to extract the target tomato. The target segmentation accuracy is improved by 7.6%. Then, for partially occluded tomatoes, a shape and position restoration method is used to recover the obscured tomato. This algorithm can extract tomato radius and centroid coordinates directly from the restored depth image. The mean Intersection over Union is 0.895, and the centroid position error is 0.62 mm for the occluded rate under 25% and the illuminance between 1 and 12 KLux. And hereby a dual‐arm robotic harvesting system is improved to achieve a picking time of 11 s per fruit, an average gripping accuracy of 8.21 mm, and an average picking success rate of 73.04%. The proposed approach realizes a high‐fidelity geometrics reconstruction instead of mere image style restoration, which endows the robot with the ability to see through obstacles in the field scenes and improves its operational success rate in its result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhijunXiang发布了新的文献求助30
2秒前
3秒前
3秒前
鲸鱼发布了新的文献求助10
3秒前
丛玉林完成签到,获得积分10
4秒前
科研通AI6应助SEANFLY采纳,获得10
4秒前
科研通AI5应助于大本事采纳,获得10
4秒前
爬不起来发布了新的文献求助10
4秒前
ab完成签到,获得积分10
4秒前
5秒前
Orange应助wb采纳,获得10
5秒前
5秒前
万能图书馆应助xun采纳,获得30
5秒前
大个应助林周采纳,获得10
5秒前
小哈发布了新的文献求助10
5秒前
Iq完成签到,获得积分10
6秒前
嘟嘟完成签到,获得积分10
6秒前
云康肖完成签到,获得积分10
6秒前
livian完成签到,获得积分10
6秒前
热情高跟鞋完成签到,获得积分10
7秒前
NexusExplorer应助golden采纳,获得10
7秒前
Lucas应助golden采纳,获得10
7秒前
科研通AI5应助golden采纳,获得10
7秒前
小二郎应助mochi采纳,获得10
8秒前
科研通AI6应助李木子采纳,获得10
8秒前
希望天下0贩的0应助朱朱采纳,获得10
8秒前
yi111发布了新的文献求助10
9秒前
祝我每日愉快完成签到 ,获得积分10
9秒前
爆米花应助12采纳,获得10
10秒前
斯文败类应助秣旎采纳,获得10
10秒前
眯眯眼的裙子完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
美好易烟发布了新的文献求助10
11秒前
mdJdm完成签到 ,获得积分10
11秒前
852应助小周采纳,获得10
11秒前
11秒前
12秒前
彭于晏应助笑点低的碧琴采纳,获得10
12秒前
周杰伦关注了科研通微信公众号
12秒前
诗琪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835