已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach

人工智能 计算机视觉 计算机科学 质心 RGB颜色模型 职位(财务) 抓住 像素 交叉口(航空) 数学 工程类 财务 航空航天工程 经济 程序设计语言
作者
Liang Gong,Wenjie Wang,Tao Wang,Chengliang Liu
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (1): 69-84 被引量:56
标识
DOI:10.1002/rob.22041
摘要

Abstract Occlusion is one of the key factors affecting the success rate of vision‐based fruit‐picking robots. It is important to accurately locate and grasp the occluded fruit in field applications, However, there is yet no universal and effective solution. In this paper, a high‐precision estimation method of spatial geometric features of occluded targets based on deep learning and multisource images is presented, enabling the selective harvest robot to envision the whole target fruit as if its occlusions do not exist. First, RGB, depth and infrared images are acquired. And pixel‐level matched RGB‐D‐I fusion images are obtained by image registration. Second, aiming at the problem of detecting the occluded tomatoes in the greenhouse, an extended Mask‐RCNN network is designed to extract the target tomato. The target segmentation accuracy is improved by 7.6%. Then, for partially occluded tomatoes, a shape and position restoration method is used to recover the obscured tomato. This algorithm can extract tomato radius and centroid coordinates directly from the restored depth image. The mean Intersection over Union is 0.895, and the centroid position error is 0.62 mm for the occluded rate under 25% and the illuminance between 1 and 12 KLux. And hereby a dual‐arm robotic harvesting system is improved to achieve a picking time of 11 s per fruit, an average gripping accuracy of 8.21 mm, and an average picking success rate of 73.04%. The proposed approach realizes a high‐fidelity geometrics reconstruction instead of mere image style restoration, which endows the robot with the ability to see through obstacles in the field scenes and improves its operational success rate in its result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
U87发布了新的文献求助80
1秒前
橙子发布了新的文献求助10
4秒前
我是老大应助佳怡采纳,获得10
4秒前
jingutaimi完成签到,获得积分10
5秒前
6秒前
寒梅恋雪完成签到 ,获得积分10
6秒前
Jasper应助leo7采纳,获得10
9秒前
清爽冬莲完成签到 ,获得积分0
10秒前
10秒前
一只小喵完成签到,获得积分10
12秒前
笑点低完成签到 ,获得积分10
12秒前
12秒前
小璐小璐要幸福完成签到 ,获得积分10
13秒前
来学习发布了新的文献求助10
13秒前
橙子完成签到,获得积分10
16秒前
亦hcy发布了新的文献求助10
16秒前
18秒前
Doctor完成签到 ,获得积分10
20秒前
DaWn完成签到 ,获得积分10
22秒前
23秒前
好久不见完成签到,获得积分10
25秒前
may完成签到 ,获得积分10
25秒前
ww发布了新的文献求助10
29秒前
29秒前
matrixu完成签到,获得积分10
31秒前
31秒前
wang_dong完成签到,获得积分10
32秒前
啊哈哈哈哈哈完成签到 ,获得积分10
35秒前
ww完成签到,获得积分10
35秒前
36秒前
完美世界应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
NexusExplorer应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
完美世界应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
揽月发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655