已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach

人工智能 计算机视觉 计算机科学 质心 RGB颜色模型 职位(财务) 抓住 像素 交叉口(航空) 数学 工程类 财务 航空航天工程 经济 程序设计语言
作者
Liang Gong,Wenjie Wang,Tao Wang,Chengliang Liu
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (1): 69-84 被引量:75
标识
DOI:10.1002/rob.22041
摘要

Abstract Occlusion is one of the key factors affecting the success rate of vision‐based fruit‐picking robots. It is important to accurately locate and grasp the occluded fruit in field applications, However, there is yet no universal and effective solution. In this paper, a high‐precision estimation method of spatial geometric features of occluded targets based on deep learning and multisource images is presented, enabling the selective harvest robot to envision the whole target fruit as if its occlusions do not exist. First, RGB, depth and infrared images are acquired. And pixel‐level matched RGB‐D‐I fusion images are obtained by image registration. Second, aiming at the problem of detecting the occluded tomatoes in the greenhouse, an extended Mask‐RCNN network is designed to extract the target tomato. The target segmentation accuracy is improved by 7.6%. Then, for partially occluded tomatoes, a shape and position restoration method is used to recover the obscured tomato. This algorithm can extract tomato radius and centroid coordinates directly from the restored depth image. The mean Intersection over Union is 0.895, and the centroid position error is 0.62 mm for the occluded rate under 25% and the illuminance between 1 and 12 KLux. And hereby a dual‐arm robotic harvesting system is improved to achieve a picking time of 11 s per fruit, an average gripping accuracy of 8.21 mm, and an average picking success rate of 73.04%. The proposed approach realizes a high‐fidelity geometrics reconstruction instead of mere image style restoration, which endows the robot with the ability to see through obstacles in the field scenes and improves its operational success rate in its result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈咪咪完成签到 ,获得积分10
1秒前
4秒前
脑洞疼应助評評采纳,获得10
4秒前
4秒前
积极香菜完成签到,获得积分20
5秒前
草木发布了新的文献求助10
6秒前
英俊的铭应助龙仔采纳,获得10
6秒前
7秒前
Kuzu发布了新的文献求助10
7秒前
SciGPT应助ww采纳,获得10
7秒前
9秒前
9秒前
lmr完成签到,获得积分10
10秒前
科研通AI6应助张桐赫采纳,获得10
10秒前
wanci应助张桐赫采纳,获得30
10秒前
天天快乐应助风趣的弘文采纳,获得10
12秒前
12秒前
英俊的铭应助彭金玲采纳,获得10
12秒前
阿鑫发布了新的文献求助10
13秒前
华仔应助小丽采纳,获得10
13秒前
善学以致用应助若知采纳,获得10
16秒前
17秒前
18秒前
18秒前
香蕉觅云应助Xx采纳,获得10
19秒前
起名困难户完成签到 ,获得积分10
19秒前
lmr发布了新的文献求助20
20秒前
20秒前
20秒前
宇宙万能香芋完成签到,获得积分10
21秒前
开心的学者完成签到,获得积分10
21秒前
ww发布了新的文献求助10
23秒前
yangjinru发布了新的文献求助10
24秒前
思源应助默默采纳,获得10
25秒前
xuan完成签到,获得积分10
25秒前
Leo发布了新的文献求助10
26秒前
宫稚晴发布了新的文献求助10
27秒前
xxl1031237415完成签到,获得积分10
28秒前
BEYOND啊完成签到 ,获得积分10
28秒前
Hello应助RLV采纳,获得30
29秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705304
求助须知:如何正确求助?哪些是违规求助? 5162660
关于积分的说明 15244765
捐赠科研通 4859189
什么是DOI,文献DOI怎么找? 2607598
邀请新用户注册赠送积分活动 1558753
关于科研通互助平台的介绍 1516319