Robotic harvesting of the occluded fruits with a precise shape and position reconstruction approach

人工智能 计算机视觉 计算机科学 质心 RGB颜色模型 职位(财务) 抓住 像素 交叉口(航空) 数学 工程类 财务 航空航天工程 经济 程序设计语言
作者
Liang Gong,Wenjie Wang,Tao Wang,Chengliang Liu
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (1): 69-84 被引量:56
标识
DOI:10.1002/rob.22041
摘要

Abstract Occlusion is one of the key factors affecting the success rate of vision‐based fruit‐picking robots. It is important to accurately locate and grasp the occluded fruit in field applications, However, there is yet no universal and effective solution. In this paper, a high‐precision estimation method of spatial geometric features of occluded targets based on deep learning and multisource images is presented, enabling the selective harvest robot to envision the whole target fruit as if its occlusions do not exist. First, RGB, depth and infrared images are acquired. And pixel‐level matched RGB‐D‐I fusion images are obtained by image registration. Second, aiming at the problem of detecting the occluded tomatoes in the greenhouse, an extended Mask‐RCNN network is designed to extract the target tomato. The target segmentation accuracy is improved by 7.6%. Then, for partially occluded tomatoes, a shape and position restoration method is used to recover the obscured tomato. This algorithm can extract tomato radius and centroid coordinates directly from the restored depth image. The mean Intersection over Union is 0.895, and the centroid position error is 0.62 mm for the occluded rate under 25% and the illuminance between 1 and 12 KLux. And hereby a dual‐arm robotic harvesting system is improved to achieve a picking time of 11 s per fruit, an average gripping accuracy of 8.21 mm, and an average picking success rate of 73.04%. The proposed approach realizes a high‐fidelity geometrics reconstruction instead of mere image style restoration, which endows the robot with the ability to see through obstacles in the field scenes and improves its operational success rate in its result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
星辰大海应助黄梦娇采纳,获得10
1秒前
2秒前
Ari_Kun完成签到 ,获得积分10
3秒前
anders完成签到 ,获得积分10
5秒前
VDC发布了新的文献求助10
5秒前
ziwen完成签到,获得积分10
6秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
板栗子完成签到,获得积分10
9秒前
高帅发布了新的文献求助10
10秒前
wdfddzh完成签到,获得积分10
11秒前
科研通AI6应助zhzhzh采纳,获得10
11秒前
壮观的寒松完成签到,获得积分10
12秒前
12秒前
大道无形我有型完成签到,获得积分10
12秒前
田様应助开心就吃猕猴桃采纳,获得10
12秒前
南海神尼完成签到,获得积分10
13秒前
板栗子发布了新的文献求助10
14秒前
3587发布了新的文献求助30
14秒前
15秒前
15秒前
云天完成签到,获得积分20
15秒前
月亮发布了新的文献求助10
16秒前
共享精神应助卷毛兔采纳,获得10
16秒前
17秒前
18秒前
18秒前
小熊完成签到,获得积分10
19秒前
丘比特应助tangnan采纳,获得10
19秒前
19秒前
繁荣的凡完成签到 ,获得积分10
20秒前
VDC发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
斗牛的番茄完成签到 ,获得积分10
21秒前
kk发布了新的文献求助10
21秒前
段醒醒发布了新的文献求助10
21秒前
epsilonN发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660019
求助须知:如何正确求助?哪些是违规求助? 4830914
关于积分的说明 15088949
捐赠科研通 4818636
什么是DOI,文献DOI怎么找? 2578700
邀请新用户注册赠送积分活动 1533328
关于科研通互助平台的介绍 1492061