Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning

基因组 猎枪 丰度(生态学) 霰弹枪测序 抗生素 活性污泥 抗性(生态学) 化学 微生物学 基因 抗生素耐药性 环境科学 生物 生态学 环境工程 污水处理 生物化学 DNA测序
作者
Yuepeng Sun,Bertrand Clarke,Jennifer Clarke,Xu Li
出处
期刊:Water Research [Elsevier BV]
卷期号:202: 117384-117384 被引量:76
标识
DOI:10.1016/j.watres.2021.117384
摘要

• Metagenomic datasets on activated sludge were analyzed using random forests (RF's). • ARGs showed associations with abundant taxa, pathogens/indicators, and nitrifiers. • Individual pathogens/indicators exhibited positive relationships with select ARGs. • The RF's developed could predict the abundance of ARGs in a full-scale WWTP. • Coupling metagenomics and RF's offered a means to predict bacterial hosts of ARGs. While the microbiome of activated sludge (AS) in wastewater treatment plants (WWTPs) plays a vital role in shaping the resistome, identifying the potential bacterial hosts of antibiotic resistance genes (ARGs) in WWTPs remains challenging. The objective of this study is to explore the feasibility of using a machine learning approach, random forests (RF's), to identify the strength of associations between ARGs and bacterial taxa in metagenomic datasets from the activated sludge of WWTPs. Our results show that the abundance of select ARGs can be predicted by RF's using abundant genera ( Candidatus Accumulibacter, Dechloromonas, Pesudomonas , and Thauera , etc.), (opportunistic) pathogens and indicators ( Bacteroides, Clostridium , and Streptococcus , etc.), and nitrifiers ( Nitrosomonas and Nitrospira , etc.) as explanatory variables. The correlations between predicted and observed abundance of ARGs ( erm (B), tet (O), tet (Q), etc.) ranged from medium (0.400 < R 2 < 0.600) to strong (R 2 > 0.600) when validated on testing datasets. Compared to those belonging to the other two groups, individual genera in the group of (opportunistic) pathogens and indicator bacteria had more positive functional relationships with select ARGs, suggesting genera in this group (e.g., Bacteroides, Clostridium , and Streptococcus ) may be hosts of select ARGs. Furthermore, RF's with (opportunistic) pathogens and indicators as explanatory variables were used to predict the abundance of select ARGs in a full-scale WWTP successfully. Machine learning approaches such as RF's can potentially identify bacterial hosts of ARGs and reveal possible functional relationships between the ARGs and microbial community in the AS of WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助腦內小劇場采纳,获得10
刚刚
一碗豚骨拉面完成签到,获得积分10
刚刚
Herry完成签到,获得积分10
1秒前
厚礼羊发布了新的文献求助10
1秒前
李佳发布了新的文献求助10
1秒前
江屿发布了新的文献求助10
1秒前
1秒前
半岛铁拳发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
iiiiiuy完成签到,获得积分10
3秒前
遨游的人完成签到,获得积分10
3秒前
4秒前
章鱼小丸子完成签到 ,获得积分10
4秒前
一壶古酒应助shaangu623采纳,获得30
4秒前
bbq完成签到,获得积分20
4秒前
CipherSage应助yang采纳,获得10
4秒前
5秒前
6秒前
YUZ发布了新的文献求助10
6秒前
香蕉觅云应助晓槐采纳,获得10
6秒前
脑洞疼应助张成协采纳,获得10
7秒前
7秒前
7秒前
8秒前
相因发布了新的文献求助10
8秒前
健忘的妙松完成签到,获得积分10
8秒前
8秒前
8秒前
JamesPei应助天空的声音采纳,获得10
9秒前
111111完成签到,获得积分10
9秒前
空空道人发布了新的文献求助30
10秒前
10秒前
11秒前
mfy0068发布了新的文献求助10
11秒前
Akim应助小羊采纳,获得10
13秒前
niniyiya发布了新的文献求助10
13秒前
Yyyyy应助chris chen采纳,获得10
13秒前
zuolan发布了新的文献求助10
13秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240038
求助须知:如何正确求助?哪些是违规求助? 4407262
关于积分的说明 13717766
捐赠科研通 4275912
什么是DOI,文献DOI怎么找? 2346201
邀请新用户注册赠送积分活动 1343431
关于科研通互助平台的介绍 1301395