Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning

基因组 猎枪 丰度(生态学) 霰弹枪测序 抗生素 活性污泥 抗性(生态学) 化学 微生物学 基因 抗生素耐药性 环境科学 生物 生态学 环境工程 污水处理 生物化学 DNA测序
作者
Yuepeng Sun,Bertrand Clarke,Jennifer Clarke,Xu Li
出处
期刊:Water Research [Elsevier]
卷期号:202: 117384-117384 被引量:53
标识
DOI:10.1016/j.watres.2021.117384
摘要

• Metagenomic datasets on activated sludge were analyzed using random forests (RF's). • ARGs showed associations with abundant taxa, pathogens/indicators, and nitrifiers. • Individual pathogens/indicators exhibited positive relationships with select ARGs. • The RF's developed could predict the abundance of ARGs in a full-scale WWTP. • Coupling metagenomics and RF's offered a means to predict bacterial hosts of ARGs. While the microbiome of activated sludge (AS) in wastewater treatment plants (WWTPs) plays a vital role in shaping the resistome, identifying the potential bacterial hosts of antibiotic resistance genes (ARGs) in WWTPs remains challenging. The objective of this study is to explore the feasibility of using a machine learning approach, random forests (RF's), to identify the strength of associations between ARGs and bacterial taxa in metagenomic datasets from the activated sludge of WWTPs. Our results show that the abundance of select ARGs can be predicted by RF's using abundant genera ( Candidatus Accumulibacter, Dechloromonas, Pesudomonas , and Thauera , etc.), (opportunistic) pathogens and indicators ( Bacteroides, Clostridium , and Streptococcus , etc.), and nitrifiers ( Nitrosomonas and Nitrospira , etc.) as explanatory variables. The correlations between predicted and observed abundance of ARGs ( erm (B), tet (O), tet (Q), etc.) ranged from medium (0.400 < R 2 < 0.600) to strong (R 2 > 0.600) when validated on testing datasets. Compared to those belonging to the other two groups, individual genera in the group of (opportunistic) pathogens and indicator bacteria had more positive functional relationships with select ARGs, suggesting genera in this group (e.g., Bacteroides, Clostridium , and Streptococcus ) may be hosts of select ARGs. Furthermore, RF's with (opportunistic) pathogens and indicators as explanatory variables were used to predict the abundance of select ARGs in a full-scale WWTP successfully. Machine learning approaches such as RF's can potentially identify bacterial hosts of ARGs and reveal possible functional relationships between the ARGs and microbial community in the AS of WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lab完成签到 ,获得积分0
刚刚
刚刚
gxudmy发布了新的文献求助10
1秒前
yefeng发布了新的文献求助10
2秒前
3秒前
今后应助何大帅哥采纳,获得10
3秒前
我是125发布了新的文献求助10
3秒前
baekhyun发布了新的文献求助10
3秒前
丰知然举报WL0011求助涉嫌违规
4秒前
4秒前
共享精神应助拼搏草莓采纳,获得10
4秒前
Jasper应助binu采纳,获得10
4秒前
Bazinga完成签到,获得积分10
4秒前
致橡树发布了新的文献求助10
5秒前
6秒前
LL发布了新的文献求助10
7秒前
寒冷天空完成签到,获得积分10
7秒前
艾查恩完成签到,获得积分10
7秒前
如初完成签到 ,获得积分10
7秒前
Hcc完成签到 ,获得积分10
8秒前
xu0052发布了新的文献求助10
8秒前
方青烟应助任晴采纳,获得10
9秒前
9秒前
橘子s完成签到,获得积分10
10秒前
zz发布了新的文献求助10
10秒前
科目三应助Liu采纳,获得10
10秒前
丰知然举报梦里看花落求助涉嫌违规
10秒前
TOTORO完成签到,获得积分10
11秒前
mcl完成签到,获得积分10
11秒前
12秒前
Enckson完成签到,获得积分10
13秒前
张包包发布了新的文献求助10
13秒前
mengjie发布了新的文献求助10
13秒前
丰知然举报mwy求助涉嫌违规
14秒前
ZhouYW完成签到,获得积分10
15秒前
香蕉觅云应助JiaY采纳,获得10
15秒前
高高亿先发布了新的文献求助10
15秒前
gxudmy完成签到,获得积分10
15秒前
Singularity应助LL采纳,获得10
17秒前
英俊的铭应助lily采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451608
求助须知:如何正确求助?哪些是违规求助? 3047073
关于积分的说明 9008901
捐赠科研通 2735980
什么是DOI,文献DOI怎么找? 1500473
科研通“疑难数据库(出版商)”最低求助积分说明 693628
邀请新用户注册赠送积分活动 691907