Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learning

基因组 猎枪 丰度(生态学) 霰弹枪测序 抗生素 活性污泥 抗性(生态学) 化学 微生物学 基因 抗生素耐药性 环境科学 生物 生态学 环境工程 污水处理 生物化学 DNA测序
作者
Yuepeng Sun,Bertrand Clarke,Jennifer Clarke,Xu Li
出处
期刊:Water Research [Elsevier BV]
卷期号:202: 117384-117384 被引量:76
标识
DOI:10.1016/j.watres.2021.117384
摘要

• Metagenomic datasets on activated sludge were analyzed using random forests (RF's). • ARGs showed associations with abundant taxa, pathogens/indicators, and nitrifiers. • Individual pathogens/indicators exhibited positive relationships with select ARGs. • The RF's developed could predict the abundance of ARGs in a full-scale WWTP. • Coupling metagenomics and RF's offered a means to predict bacterial hosts of ARGs. While the microbiome of activated sludge (AS) in wastewater treatment plants (WWTPs) plays a vital role in shaping the resistome, identifying the potential bacterial hosts of antibiotic resistance genes (ARGs) in WWTPs remains challenging. The objective of this study is to explore the feasibility of using a machine learning approach, random forests (RF's), to identify the strength of associations between ARGs and bacterial taxa in metagenomic datasets from the activated sludge of WWTPs. Our results show that the abundance of select ARGs can be predicted by RF's using abundant genera ( Candidatus Accumulibacter, Dechloromonas, Pesudomonas , and Thauera , etc.), (opportunistic) pathogens and indicators ( Bacteroides, Clostridium , and Streptococcus , etc.), and nitrifiers ( Nitrosomonas and Nitrospira , etc.) as explanatory variables. The correlations between predicted and observed abundance of ARGs ( erm (B), tet (O), tet (Q), etc.) ranged from medium (0.400 < R 2 < 0.600) to strong (R 2 > 0.600) when validated on testing datasets. Compared to those belonging to the other two groups, individual genera in the group of (opportunistic) pathogens and indicator bacteria had more positive functional relationships with select ARGs, suggesting genera in this group (e.g., Bacteroides, Clostridium , and Streptococcus ) may be hosts of select ARGs. Furthermore, RF's with (opportunistic) pathogens and indicators as explanatory variables were used to predict the abundance of select ARGs in a full-scale WWTP successfully. Machine learning approaches such as RF's can potentially identify bacterial hosts of ARGs and reveal possible functional relationships between the ARGs and microbial community in the AS of WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的傲易完成签到 ,获得积分10
刚刚
暖暖发布了新的文献求助10
刚刚
科研通AI5应助ling三岁采纳,获得10
刚刚
刚刚
斗罗大陆发布了新的文献求助10
刚刚
科研通AI5应助lw采纳,获得30
1秒前
科研通AI6应助圆锥香蕉采纳,获得30
1秒前
bronny发布了新的文献求助10
1秒前
2秒前
pphhhhaannn发布了新的文献求助10
3秒前
烟花应助彩色鹏煊采纳,获得10
3秒前
4秒前
yanxueni完成签到,获得积分20
4秒前
lll发布了新的文献求助10
4秒前
紫婧完成签到,获得积分10
5秒前
LL发布了新的文献求助10
5秒前
hihi完成签到,获得积分10
5秒前
kmy发布了新的文献求助10
5秒前
无辜友绿完成签到,获得积分10
6秒前
6秒前
7秒前
哈哈哈完成签到,获得积分20
7秒前
这个柳絮不会飞完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Renn完成签到,获得积分10
9秒前
9秒前
Akim应助谦让的语柳采纳,获得10
9秒前
我嘞个豆发布了新的文献求助10
10秒前
廷聿关注了科研通微信公众号
10秒前
木子秀完成签到,获得积分10
10秒前
10秒前
情怀应助xxm采纳,获得10
10秒前
bronny完成签到,获得积分10
10秒前
科研通AI5应助xiaowei采纳,获得10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192675
求助须知:如何正确求助?哪些是违规求助? 4375605
关于积分的说明 13625794
捐赠科研通 4230058
什么是DOI,文献DOI怎么找? 2320280
邀请新用户注册赠送积分活动 1318605
关于科研通互助平台的介绍 1268912